首页> 外文OA文献 >Modeling of Sulfite Concentration, Particle Size, and Reaction Time in Lignosulfonate Production from Barley Straw Using Response Surface Methodology and Artificial Neural Network
【2h】

Modeling of Sulfite Concentration, Particle Size, and Reaction Time in Lignosulfonate Production from Barley Straw Using Response Surface Methodology and Artificial Neural Network

机译:使用响应面方法和人工神经网络,从大麦秸秆中生产亚硫酸盐浓度,粒度和反应时间的建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Barley straw is a lignocellulosic biomass that can be used to obtain value-added products for industrial applications. Barley straw hydrolysis with sodium sulfite facilitates the production of lignosulfonates. In this work, the delignification process of barley straw by solubilizing lignin through sulfite method was studied. Response surface methodology and artificial neural network were used to develop predictive models for simulation and optimization of delignification process of barley straw. The influence of parameters over sulfite concentration (1.0 to 10.0%), particle size (8 to 20), and reaction time (30 to 90 min) on total percentage of solubilized material was investigated through a three level three factor (33) full factorial central composite design with the help of Matlab® ver. 8.1. The results show that particle size and sulfite concentration have the most significant effect on delignification process. Both techniques, response surface methodology and artificial neural networks, predicted the lignosulfonate yield adequately, although the artificial neural network technique produced a better fit (R2 = 0.9825) against the response surface methodology (R2 = 0.9290). Based on these findings, this study can be used as a guide to forecast the potential production of lignosulfonates from barley straw using different experimental conditions.
机译:大麦秸秆是一种木质纤维素生物量,可用于获得工业应用的增值产品。亚硫酸钠的大麦秸秆水解有助于生产木质素磺酸盐。在这项工作中,研究了通过亚硫酸盐法溶解木质素的大麦秸秆的脱烃处理。响应地面方法和人工神经网络用于开发大麦秸秆仿真过程的预测模型。通过三级三因素(33)完整因子研究参数对亚硫酸盐浓度(1.0至10.0%),粒度(8至20),粒度(8至20)和反应时间(30至90分钟)的影响在Matlab®Ver的帮助下,中央复合设计。 8.1。结果表明,粒径和亚硫酸盐浓度对去氧过程具有最显着的影响。这两种技术,响应面方法和人工神经网络都预先充分地预测了木质素磺酸盐产量,尽管人工神经网络技术产生更好的拟合(R2 = 0.9825),抵抗响应面方法(R2 = 0.9290)。基于这些发现,本研究可用作使用不同的实验条件预测从大麦秸秆中潜在生产木质素磺酸盐的指南。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号