首页> 外文OA文献 >A Comparison of Regression Tree Approaches to Modelling the Efficacy of Water Hyacinth Biocontrol Using Multitemporal Spectral Datasets
【2h】

A Comparison of Regression Tree Approaches to Modelling the Efficacy of Water Hyacinth Biocontrol Using Multitemporal Spectral Datasets

机译:回归树立方法利用多立体光谱数据集模拟水合发生株生物控制效果的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Water hyacinth (Eichhornia crassipes) is an exotic plant species that is effectively controlled by Neochetina spp. weevils. This study is aimed at determining if spectroscopic data may be utilized to predict insect-induced stress on water hyacinth plants. Single target regression trees (STRTs), multitarget regression trees (MTRTs), and random forest multitarget regression trees (RF-MTRTs) have been used to predict feeding scar damage (FSD) and relative leaf chlorophyll content (RLCC) from hyperspectral canopy reflectance data. Results from this study show that the correlation coefficient of STRTs (training accuracy: 76%–97%; validation accuracy: 47%–86%) performs better than MTRTs (training accuracy: 74%–90%; validation accuracy: 45%–77%) for all infestation levels but are difficult to interpret simultaneously. In contrast, MTRTs (size: 23–35 nodes) are much smaller and more interpretable than STRTs (size: 11–47 nodes) because they predict FSD and RLCC simultaneously. Importantly, RF-MTRTs (training accuracy: 95%–98%; validation accuracy: 55%–88%) yield better predictive performance than STRTs and MTRTs for all infestation levels. It is concluded that MTRTs can be utilized for model interpretation as they are more interpretable; however, RF-MTRTs offer an improved predictive performance.
机译:水葫芦(Eichhornia Crassipes)是一种异国情调的植物物种,由Neochetina SPP有效控制。象鼻虫。该研究旨在确定光谱数据是否可用于预测水血管生植物上的昆虫诱导的应力。单个目标回归树(STRTS),多元回归树(MTRTS)和随机森林多元回归树(RF-MTRTS)已被用于预测来自高光谱冠层反射数据的喂养瘢痕损伤(FSD)和相对叶片叶绿素含量(RLCC) 。本研究结果表明,Strrs的相关系数(训练准确度:76%-97%;验证精度:47%-86%)表现优于MTRTS(培训准确度:74%-90%;验证准确度:45% - 77%)对于所有侵扰水平但很难同时解释。相反,MTRTS(大小:23-35节点)比STRRS(大小:11-47节点)更小,更可解释,因为它们同时预测FSD和RLCC。重要的是,RF-MTRTS(训练准确度:95%-98%;验证精度:55%-88%)产生比所有侵扰水平的Strrs和MTRTS更好的预测性能。得出结论,马斯特可以用于模型解释,因为它们更具可解释;然而,RF-MTRTS提供了改进的预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号