首页> 外文OA文献 >The Importance of Transfer Function in Solving Set-Union Knapsack Problem Based on Discrete Moth Search Algorithm
【2h】

The Importance of Transfer Function in Solving Set-Union Knapsack Problem Based on Discrete Moth Search Algorithm

机译:基于离散蛾类搜索算法解决组合联合背包问题的传递函数的重要性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Moth search (MS) algorithm, originally proposed to solve continuous optimization problems, is a novel bio-inspired metaheuristic algorithm. At present, there seems to be little concern about using MS to solve discrete optimization problems. One of the most common and efficient ways to discretize MS is to use a transfer function, which is in charge of mapping a continuous search space to a discrete search space. In this paper, twelve transfer functions divided into three families, S-shaped (named S1, S2, S3, and S4), V-shaped (named V1, V2, V3, and V4), and other shapes (named O1, O2, O3, and O4), are combined with MS, and then twelve discrete versions MS algorithms are proposed for solving set-union knapsack problem (SUKP). Three groups of fifteen SUKP instances are employed to evaluate the importance of these transfer functions. The results show that O4 is the best transfer function when combined with MS to solve SUKP. Meanwhile, the importance of the transfer function in terms of improving the quality of solutions and convergence rate is demonstrated as well.
机译:MOTH搜索(MS)算法,最初提出要解决连续优化问题,是一种新型生物启发的成群质算法。目前,似乎对使用MS来解决离散优化问题几乎没有问题。分散化MS的最常见和有效的方法之一是使用传递函数,这负责将连续搜索空间映射到离散的搜索空间。本文,十二个转移函数分为三个家庭,S形(名为S1,S2,S3和S4),V形(名为V1,V2,V3和V4),以及其他形状(名为O1,O2) ,O3和O4)与MS组合,然后提出了12个离散的版本MS算法,用于求解集合外背包问题(SUKP)。使用三组十五个SUKP实例来评估这些转移功能的重要性。结果表明,O4是与MS解决SUKP的最佳传输功能。同时,还证明了改善溶液质量和收敛速度的转移功能的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号