首页> 外文OA文献 >Fuzzy Decision-Based Efficient Task Offloading Management Scheme in Multi-Tier MEC-Enabled Networks
【2h】

Fuzzy Decision-Based Efficient Task Offloading Management Scheme in Multi-Tier MEC-Enabled Networks

机译:基于模糊的决策高效任务卸载了多层MEC网络中的管理方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multi-access edge computing (MEC) is a new leading technology for meeting the demands of key performance indicators (KPIs) in 5G networks. However, in a rapidly changing dynamic environment, it is hard to find the optimal target server for processing offloaded tasks because we do not know the end users’ demands in advance. Therefore, quality of service (QoS) deteriorates because of increasing task failures and long execution latency from congestion. To reduce latency and avoid task failures from resource-constrained edge servers, vertical offloading between mobile devices with local-edge collaboration or with local edge-remote cloud collaboration have been proposed in previous studies. However, they ignored the nearby edge server in the same tier that has excess computing resources. Therefore, this paper introduces a fuzzy decision-based cloud-MEC collaborative task offloading management system called FTOM, which takes advantage of powerful remote cloud-computing capabilities and utilizes neighboring edge servers. The main objective of the FTOM scheme is to select the optimal target node for task offloading based on server capacity, latency sensitivity, and the network’s condition. Our proposed scheme can make dynamic decisions where local or nearby MEC servers are preferred for offloading delay-sensitive tasks, and delay-tolerant high resource-demand tasks are offloaded to a remote cloud server. Simulation results affirm that our proposed FTOM scheme significantly improves the rate of successfully executing offloaded tasks by approximately 68.5%, and reduces task completion time by 66.6%, when compared with a local edge offloading (LEO) scheme. The improved and reduced rates are 32.4% and 61.5%, respectively, when compared with a two-tier edge orchestration-based offloading (TTEO) scheme. They are 8.9% and 47.9%, respectively, when compared with a fuzzy orchestration-based load balancing (FOLB) scheme, approximately 3.2% and 49.8%, respectively, when compared with a fuzzy workload orchestration-based task offloading (WOTO) scheme, and approximately 38.6%% and 55%, respectively, when compared with a fuzzy edge-orchestration based collaborative task offloading (FCTO) scheme.
机译:多访问边缘计算(MEC)是一种新的领先技术,用于满足5G网络中的关键性能指标(KPI)的需求。然而,在快速改变的动态环境中,很难找到用于处理卸载任务的最佳目标服务器,因为我们不知道最终用户的需求提前。因此,服务质量(QoS)因越来越多的任务故障和来自拥塞而长期的执行延迟而恶化。为了减少延迟并避免资源受限的边缘服务器的任务故障,在先前的研究中提出了具有本地边缘协作或使用本地边缘遥控云协作的移动设备之间的垂直卸载。但是,它们在具有多余计算资源的相同层中忽略了附近的Edge服务器。因此,本文介绍了一种模糊的决策云-MEC协作任务卸载管理系统,称为FTOM,它利用了强大的远程云计算能力,并利用了相邻边缘服务器。 FTOM方案的主要目标是根据服务器容量,延迟灵敏度和网络的情况选择任务卸载的最佳目标节点。我们所提出的方案可以使当地或附近MEC服务器优先用于卸载延迟敏感任务的本地或附近的MEC服务器,并且延迟高资源需求任务卸载到远程云服务器。仿真结果肯定,我们提出的FTOM计划显着提高了大约68.5%的成功执行的任务的速率,并与本地边缘卸载(Leo)方案相比,将任务完成时间减少66.6%。与基于双层编排的卸载(TSO)方案相比,改善和降低的速率分别为32.4%和61.5%。与基于模糊的策略的负载平衡(Folb)方案相比,它们分别为8.9%和47.9%,分别与基于模糊的工作量编排的任务卸载(Woto)方案相比,约3.2%和49.8%。与基于模糊的边缘编排的协作任务卸载(FCTO)方案相比,分别约为38.6 %%和55%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号