首页> 外文OA文献 >Adaptive Control Using Fully Online Sequential-Extreme Learning Machine and a Case Study on Engine Air-Fuel Ratio Regulation
【2h】

Adaptive Control Using Fully Online Sequential-Extreme Learning Machine and a Case Study on Engine Air-Fuel Ratio Regulation

机译:适应性控制使用完全在线顺序极限学习机和发动机空燃比调节案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most adaptive neural control schemes are based on stochastic gradient-descent backpropagation (SGBP), which suffers from local minima problem. Although the recently proposed regularized online sequential-extreme learning machine (ReOS-ELM) can overcome this issue, it requires a batch of representative initial training data to construct a base model before online learning. The initial data is usually difficult to collect in adaptive control applications. Therefore, this paper proposes an improved version of ReOS-ELM, entitled fully online sequential-extreme learning machine (FOS-ELM). While retaining the advantages of ReOS-ELM, FOS-ELM discards the initial training phase, and hence becomes suitable for adaptive control applications. To demonstrate its effectiveness, FOS-ELM was applied to the adaptive control of engine air-fuel ratio based on a simulated engine model. Besides, controller parameters were also analyzed, in which it is found that large hidden node number with small regularization parameter leads to the best performance. A comparison among FOS-ELM and SGBP was also conducted. The result indicates that FOS-ELM achieves better tracking and convergence performance than SGBP, since FOS-ELM tends to learn the unknown engine model globally whereas SGBP tends to “forget” what it has learnt. This implies that FOS-ELM is more preferable for adaptive control applications.
机译:大多数自适应神经控制方案是基于随机梯度下降反向传播(SGBP),其从局部最小值问题的困扰。虽然最近提出转正在线连续极端学习机(的ReOS-ELM)可以解决这个问题,它需要一批有代表性的初始训练数据的在线学习之前建立一个示范基地。初始数据通常难以在自适应控制应用来收集。因此,本文提出的ReOS-ELM的改进版,题为全面上线连续极端学习机(FOS-ELM)。同时保留的ReOS-ELM,FOS-ELM丢弃初始训练阶段,的优点,并因此变得适合自适应控制应用。为了证明其有效性,FOS-ELM被应用到基于仿真的发动机模型的发动机空气 - 燃料比的自适应控制。此外,还进行了分析控制器参数,在发现小正则参数导致最佳的性能大隐藏节点数量。 FOS-ELM和SGBP之间的比较也进行。结果表明,FOS-ELM实现比SGBP更好的跟踪和收敛性能,因为FOS-ELM趋向于全球学习未知的发动机型号而SGBP往往会“忘记”所了解到的。这意味着,FOS-ELM是用于自适应控制应用更优选的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号