首页> 外文OA文献 >Rapid Retrieval of Lung Nodule CT Images Based on Hashing and Pruning Methods
【2h】

Rapid Retrieval of Lung Nodule CT Images Based on Hashing and Pruning Methods

机译:基于散列和修剪方法的肺结节CT图像快速检索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The similarity-based retrieval of lung nodule computed tomography (CT) images is an important task in the computer-aided diagnosis of lung lesions. It can provide similar clinical cases for physicians and help them make reliable clinical diagnostic decisions. However, when handling large-scale lung images with a general-purpose computer, traditional image retrieval methods may not be efficient. In this paper, a new retrieval framework based on a hashing method for lung nodule CT images is proposed. This method can translate high-dimensional image features into a compact hash code, so the retrieval time and required memory space can be reduced greatly. Moreover, a pruning algorithm is presented to further improve the retrieval speed, and a pruning-based decision rule is presented to improve the retrieval precision. Finally, the proposed retrieval method is validated on 2,450 lung nodule CT images selected from the public Lung Image Database Consortium (LIDC) database. The experimental results show that the proposed pruning algorithm effectively reduces the retrieval time of lung nodule CT images and improves the retrieval precision. In addition, the retrieval framework is evaluated by differentiating benign and malignant nodules, and the classification accuracy can reach 86.62%, outperforming other commonly used classification methods.
机译:基于相似性的肺结核计算断层扫描(CT)图像是肺病灶的计算机辅助诊断中的重要任务。它可以为医生提供类似的临床案例,帮助他们进行可靠的临床诊断决策。然而,当用通用计算机处理大型肺图像时,传统的图像检索方法可能无法有效。本文提出了一种基于肺结节CT图像散裂方法的新检索框架。该方法可以将高维图像特征转换为紧凑的哈希码,因此可以大大减少检索时间和所需的存储空间。此外,提出了一种修剪算法以进一步提高检索速度,并且提出了基于修剪的判定规则来提高检索精度。最后,验证了从公共肺图像数据库联盟(LIDC)数据库中的2,450肺结核CT图像验证了所提出的检索方法。实验结果表明,所提出的修剪算法有效地降低了肺结核CT图像的检索时间,提高了检索精度。此外,通过区分良性和恶性结节来评估检索框架,分类精度可达到86.62%,优于其他常用的分类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号