首页> 外文OA文献 >Uncertainty Quantification and Apportionment in Air Quality Models using the Polynomial Chaos Method
【2h】

Uncertainty Quantification and Apportionment in Air Quality Models using the Polynomial Chaos Method

机译:使用多项式混沌方法的空气质量模型中的不确定度量化和分配

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Simulations of large-scale physical systems are often affected by the uncertainties in data, in model parameters, and by incomplete knowledge of the underlying physics. The traditional deterministic simulations do not account for such uncertainties. It is of interest to extend simulation results with ``error bars'' that quantify the degree of uncertainty. This added information provides a confidence level for the simulation result. For example, the air quality forecast with an associated uncertainty information is very useful for making policy decisions regarding environmental protection. Techniques such as Monte Carlo (MC) and response surface are popular for uncertainty quantification, but accurate results require a large number of runs. This incurs a high computational cost, which maybe prohibitive for large-scale models. The polynomial chaos (PC) method was proposed as a practical and efficient approach for uncertainty quantification, and has been successfully applied in many engineering fields. Polynomial chaos uses a spectral representation of uncertainty. It has the ability to handle both linear and nonlinear problems with either Gaussian or non-Gaussian uncertainties. This work extends the functionality of the polynomial chaos method to Source Uncertainty Apportionment (SUA), i.e., we use the polynomial chaos approach to attribute the uncertainty in model results to different sources of uncertainty. The uncertainty quantification and source apportionment are implemented in the Sulfur Transport Eulerian Model (STEM-III). It allows us to assess the combined effects of different sources of uncertainty to the ozone forecast. It also enables to quantify the contribution of each source to the total uncertainty in the predicted ozone levels.
机译:大型物理系统的仿真通常受数据,模型参数的不确定性以及对基础物理学的不完全了解的影响。传统的确定性模拟无法解决此类不确定性。有趣的是用``误差线''扩展模拟结果,以量化不确定性程度。此添加的信息为模拟结果提供了置信度。例如,带有相关不确定性信息的空气质量预测对于制定有关环境保护的政策非常有用。诸如蒙特卡洛(MC)和响应面之类的技术广泛用于不确定性量化,但准确的结果需要大量运行。这导致高计算成本,这对于大规模模型而言可能是过高的。多项式混沌(PC)方法被提出作为一种实用,有效的不确定性量化方法,并已成功应用于许多工程领域。多项式混沌使用不确定性的频谱表示。它具有处理具有高斯或非高斯不确定性的线性和非线性问题的能力。这项工作将多项式混沌方法的功能扩展到源不确定性分配(SUA),即我们使用多项式混沌方法将模型结果中的不确定性归因于不同的不确定性源。不确定度量化和源分配在硫运输欧拉模型(STEM-III)中实现。它使我们能够评估不同不确定性来源对臭氧预报的综合影响。它还可以量化每种来源对预计臭氧水平总不确定性的贡献。

著录项

  • 作者

    Cheng Haiyan; Sandu Adrian;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号