首页> 外文期刊>Environmental Modelling & Software >Uncertainty quantification and apportionment in air quality models using the polynomial chaos method
【24h】

Uncertainty quantification and apportionment in air quality models using the polynomial chaos method

机译:使用多项式混沌方法的空气质量模型中的不确定度量化和分配

获取原文
获取原文并翻译 | 示例

摘要

Current air quality models generate deterministic forecasts by assuming perfect model, perfectly known parameters, and exact input data. However, our knowledge of the physics is imperfect. It is of interest to extend the deterministic simulation results with "error bars" that quantify the degree of uncertainty, and analyze the impact of the uncertainty input on the simulation results. This added information provides a confidence level for the forecast results. Monte Carlo (MC) method is a popular approach for air quality model uncertainty analysis, but it converges slowly. This work discusses the polynomial chaos (PC) method that is more suitable for uncertainty quantification (UQ) in large-scale models. We propose a new approach for uncertainty apportionment (UA), i.e., we develop a PC approach to attribute the uncertainties in model results to different uncertainty inputs. The UQ and UA techniques are implemented in the Sulfur Transport Eulerian Model (STEM-HI). A typical scenario of air pollution in the northeast region of the USA is considered. The UQ and UA results allow us to assess the combined effects of different input uncertainties on the forecast uncertainty. They also enable to quantify the contribution of input uncertainties to the uncertainty in the predicted ozone and PAN concentrations.
机译:当前的空气质量模型通过假设完美模型,完美已知参数和精确输入数据来生成确定性预测。但是,我们对物理学的认识并不完善。有趣的是用“误差线”扩展确定性仿真结果,以量化不确定性程度,并分析不确定性输入对仿真结果的影响。此添加的信息为预测结果提供了置信度。蒙特卡洛(MC)方法是一种用于空气质量模型不确定性分析的流行方法,但是收敛缓慢。这项工作讨论了更适合于大型模型中的不确定性量化(UQ)的多项式混沌(PC)方法。我们提出了一种不确定性分摊(UA)的新方法,即我们开发了一种PC方法来将模型结果中的不确定性归因于不同的不确定性输入。 UQ和UA技术在硫磺运输欧拉模型(STEM-HI)中实现。考虑了美国东北地区空气污染的典型情况。 UQ和UA结果使我们能够评估不同输入不确定性对预测不确定性的综合影响。它们还能够量化输入不确定性对预测臭氧和PAN浓度不确定性的贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号