首页> 外文OA文献 >Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization
【2h】

Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization

机译:用于非渗透随机复合优化的迷你批量随机近似方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper considers a class of constrained stochastic composite optimizationproblems whose objective function is given by the summation of a differentiable(possibly nonconvex) component, together with a certain non-differentiable (butconvex) component. In order to solve these problems, we propose a randomizedstochastic projected gradient (RSPG) algorithm, in which proper mini-batch ofsamples are taken at each iteration depending on the total budget of stochasticsamples allowed. The RSPG algorithm also employs a general distance function toallow taking advantage of the geometry of the feasible region. Complexity ofthis algorithm is established in a unified setting, which shows nearly optimalcomplexity of the algorithm for convex stochastic programming. Apost-optimization phase is also proposed to significantly reduce the varianceof the solutions returned by the algorithm. In addition, based on the RSPGalgorithm, a stochastic gradient free algorithm, which only uses the stochasticzeroth-order information, has been also discussed. Some preliminary numericalresults are also provided.
机译:本文考虑了一类受约束的随机复合优化问题,其目标函数由可微(可能是非凸)分量与某个不可微(可凸)分量的总和给出。为了解决这些问题,我们提出了一种随机随机投影梯度算法(RSPG),该算法根据允许的随机样本的总预算在每次迭代中获取适当的小批量样本。 RSPG算法还采用通用距离函数,以利用可行区域的几何形状。该算法的复杂度是在统一的设置下建立的,这表明凸随机规划的算法几乎具有最佳的复杂度。还提出了后优化阶段,以显着减小算法返回的解的方差。另外,基于RSPG算法,还讨论了仅使用随机零阶信息的随机无梯度算法。还提供了一些初步的数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号