首页> 外文OA文献 >A Novel Deep Forest-Based Active Transfer Learning Method for PolSAR Images
【2h】

A Novel Deep Forest-Based Active Transfer Learning Method for PolSAR Images

机译:基于深度林的Polsar图像的基于深度林的主动转移学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The information extraction of polarimetric synthetic aperture radar (PolSAR) images typically requires a great number of training samples; however, the training samples from historical images are less reusable due to the distribution differences. Consequently, there is a significant manual cost to collecting training samples when processing new images. In this paper, to address this problem, we propose a novel active transfer learning method, which combines active learning and the deep forest model to perform transfer learning. The main idea of the proposed method is to gradually improve the performance of the model in target domain tasks with the increase of the levels of the cascade structure. More specifically, in the growing stage, a new active learning strategy is used to iteratively add the most informative target domain samples to the training set, and the augmented features generated by the representation learning capability of the deep forest model are used to improve the cross-domain representational capabilities of the feature space. In the filtering stage, an effective stopping criterion is used to adaptively control the complexity of the model, and two filtering strategies are used to accelerate the convergence of the model. We conducted experiments using three sets of PolSAR images, and the results were compared with those of four existing transfer learning algorithms. Overall, the experimental results fully demonstrated the effectiveness and robustness of the proposed method.
机译:Polariemetric合成孔径雷达(POLSAR)图像的信息提取通常需要大量的训练样本;然而,由于分布差异,来自历史图像的训练样本不太可重复使用。因此,在处理新图像时收集训练样本有重大的手动成本。在本文中,为了解决这个问题,我们提出了一种新的主​​动转移学习方法,它结合了主动学习和深林模型来进行转移学习。所提出的方法的主要思想是逐步提高级联结构水平的目标域任务中模型的性能。更具体地,在越来越多的阶段,使用新的主动学习策略来迭代地将最具信息丰富的目标域样本添加到训练集中,并且通过深林模型的表示学习能力产生的增强功能用于改善十字架 - 构型空间的代表性能力。在过滤阶段,使用有效的停止标准来自适应地控制模型的复杂性,并且使用两个过滤策略来加速模型的收敛。我们使用三组Polsar图像进行了实验,并将结果与​​四个现有的转移学习算法进行了比较。总体而言,实验结果充分了解了该方法的有效性和稳健性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号