首页> 外文OA文献 >Performance evaluation for compression-accuracy trade-off using compressive sensing for EEG-based epileptic seizure detection in wireless tele-monitoring
【2h】

Performance evaluation for compression-accuracy trade-off using compressive sensing for EEG-based epileptic seizure detection in wireless tele-monitoring

机译:使用压缩感测对无线电信监控中的基于脑电的癫痫癫痫发作检测的压缩性测定的性能评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Brain is the most important part in the human body controlling muscles and nerves; Electroencephalogram (EEG) signals record brain electric activities.EEG signals captureudimportant information pertinent to different physiological brain states.In this paper, we propose an efficient framework for evaluating the power-accuracy trade-off for EEG-based compressive sensing and classification techniques in the context of epileptic seizure detection in wireless tele-monitoring.The framework incorporates compressive sensing-based energy-efficient compression, and noisy wireless communication channel to study the effect on the application accuracy. Discrete cosine transform (DCT) and compressive sensing are used for EEG signals acquisition and compression.To obtain low-complexity energy-efficient, the best data accuracy with higher compression ratio is sought. A reconstructed algorithm derived from DCT ofuddaubechie’s wavelet 6 is used to decompose the EEG signal at different levels. DCT is combined with the best basis function neural networks for EEG signals classification.Extensive experimental work is conducted, utilizing four classificationudmodels.The obtained results show an improvement inudclassification accuracies and an optimal classification rate of about 95% is achieved when using NN classifier at 85% of CR in the case of no SNR value.The satisfying results demonstrate theudeffect of efficient compression on maximizing the sensor lifetime without affecting the application’s accuracy.
机译:脑是人体控制肌肉和神经的最重要的部分;脑电图(EEG)信号记录脑电动activities.EEG信号捕获 udimportant信息相关的不同的生理脑states.In本文中,我们提出了一种高效框架用于评估功率精度权衡EEG基于压缩感测和分类技术在无线远程监控。框架癫痫发作检测的上下文中结合了基于压缩感测能量高效的压缩,和有噪声的无线通信信道,研究了应用精度的影响。离散余弦变换(DCT)和压缩感测用于EEG信号采集和compression.To获得低复杂度的节能,具有更高的压缩比的最佳数据精度要求。从DCT衍生 uddaubechie的小波6的重建算法用于在不同层面上分解EEG信号。 DCT与最好的基神经网络结合对EEG信号classification.Extensive实验工作中进行时,利用4个分类 udmodels.The获得的结果使用时显示出 udclassification精度的提高和的约95%的最优分类率达到在没有SNR价值。满足的结果的情况下,CR为85%NN分类演示上,而不影响应用程序的准确性最大化传感器寿命高效压缩的udeffect。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号