首页> 外文OA文献 >Backstepping Synthesis for Feedback Control of First-Order Hyperbolic PDEs with Spatial-Temporal Actuation
【2h】

Backstepping Synthesis for Feedback Control of First-Order Hyperbolic PDEs with Spatial-Temporal Actuation

机译:具有空间致动的一阶双曲线PDE反馈控制的综合合成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper deals with the stabilization problem of first-order hyperbolic partial differential equations (PDEs) with spatial-temporal actuation over the full physical domains. We assume that the interior actuator can be decomposed into a product of spatial and temporal components, where the spatial component satisfies a specific ordinary differential equation (ODE). A Volterra integral transformation is used to convert the original system into a simple target system using the backstepping-like procedure. Unlike the classical backstepping techniques for boundary control problems of PDEs, the internal actuation can not eliminate the residual term that causes the instability of the open-loop system. Thus, an additional differential transformation is introduced to transfer the input from the interior of the domain onto the boundary. Then, a feedback control law is designed using the classic backstepping technique which can stabilize the first-order hyperbolic PDE system in a finite time, which can be proved by using the semigroup arguments. The effectiveness of the design is illustrated with some numerical simulations.
机译:本文涉及一阶双相局部微分方程(PDE)的稳定问题,在完整物理域上具有空间致动。我们假设内部致动器可以被分解成空间和时间部件的乘积,其中空间分量满足特定的常微分方程(ode)。 Volterra积分转换用于使用类似于后静电的过程将原始系统转换为简单的目标系统。与PDE的边界控制问题的经典反向技术不同,内部致动不能消除导致开环系统不稳定性的剩余术语。因此,引入额外的差分变换以将从域内部的输入传送到边界上。然后,使用经典的背击技术设计反馈控制规律,该技术可以在有限时间中稳定一阶双曲线PDE系统,这可以通过使用半群参数来证明。设计的有效性是用一些数值模拟来说明的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号