首页> 外文OA文献 >Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE
【2h】

Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE

机译:通过基于K-Means和Smote的启发式过采样方法改善不平衡学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Learning from class-imbalanced data continues to be a common and challengingproblem in supervised learning as standard classification algorithms aredesigned to handle balanced class distributions. While different strategiesexist to tackle this problem, methods which generate artificial data to achievea balanced class distribution are more versatile than modifications to theclassification algorithm. Such techniques, called oversamplers, modify thetraining data, allowing any classifier to be used with class-imbalanceddatasets. Many algorithms have been proposed for this task, but most arecomplex and tend to generate unnecessary noise. This work presents a simple andeffective oversampling method based on k-means clustering and SMOTEoversampling, which avoids the generation of noise and effectively overcomesimbalances between and within classes. Empirical results of extensiveexperiments with 71 datasets show that training data oversampled with theproposed method improves classification results. Moreover, k-means SMOTEconsistently outperforms other popular oversampling methods. An implementationis made available in the python programming language.
机译:从Class-Imbaldanced数据中学习仍然是监督学习中的常见而挑战的问题,因为标准分类算法被引用以处理平衡级分布。虽然不同的策略提出解决这个问题,但是将人工数据生成对成功进行平衡的类分布的方法比对Theclassific算法的修改更加多样化。这些技术称为过性跳闸,修改数据,允许任何分类器与类 - imbalancedDatasets一起使用。已经提出了许多算法为此任务,但大多数arecomplex并倾向于产生不必要的噪声。这项工作提出了一种基于K-Means聚类和烟雾采样的简单无效的过采样方法,其避免了噪声的产生,有效地过度间距在类之间。具有71个数据集的广泛考生的经验结果表明,以特殊方法过采购的培训数据可提高分类结果。此外,K-Mea时非常突出地优于其他流行的过采样方法。在Python编程语言中提供的一个实施方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号