首页> 外文OA文献 >A Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases
【2h】

A Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases

机译:基于使用内部数据库的自治侦察机器人番茄植物虫探测与鉴定的基准

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Greenhouse crop production is growing throughout the world and early pest detection is of particular importance in terms of productivity and reduction of the use of pesticides. Conventional eye observation methods are nonefficient for large crops. Computer vision and recent advances in deep learning can play an important role in increasing the reliability and productivity. This paper presents the development and comparison of two different approaches for vision based automated pest detection and identification, using learning strategies. A solution that combines computer vision and machine learning is compared against a deep learning solution. The main focus of our work is on the selection of the best approach based on pest detection and identification accuracy. The inspection is focused on the most harmful pests on greenhouse tomato and pepper crops, Bemisia tabaci and Trialeurodes vaporariorum. A dataset with a huge number of infected tomato plants images was created to generate and evaluate machine learning and deep learning models. The results showed that the deep learning technique provides a better solution because (a) it achieves the disease detection and classification in one step, (b) gets better accuracy, (c) can distinguish better between Bemisia tabaci and Trialeurodes vaporariorum, and (d) allows balancing between speed and accuracy by choosing different models.
机译:温室作物生产在世界各地不断增长和早期发现害虫是特别重要的生产效率,降低农药的使用的条款。传统的肉眼观察方法nonefficient为大作物。计算机视觉和深度学习最新进展可以提高可靠性和生产率方面发挥重要作用。本文介绍了发展和对视力的两种不同方法的比较基础自动化病虫害检测和鉴定,使用学习策略。一个解决方案,综合了计算机视觉和机器学习是对一个深度学习解决方案相比。我们工作的重点是基于有害生物检测和识别准确率的最佳方法的选择。检查的重点是最有害的害虫对温室番茄和胡椒作物,烟粉虱和温室白粉虱。随着感染的番茄植株的图像数量庞大的数据集是为了产生和评估的机器学习和深入学习模型。结果表明,深学习技术提供了一种更好的解决方案,因为(a)它实现了疾病检测和分类在一个步骤中,(b)中得到更好的精度,(c)中可以区分烟粉虱和温室白粉虱,和(d之间更好)允许通过选择不同型号的速度和精度之间的平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号