首页> 外文OA文献 >Energy Efficiency Solutions for Buildings: Automated Fault Diagnosis of Air Handling Units Using Generative Adversarial Networks
【2h】

Energy Efficiency Solutions for Buildings: Automated Fault Diagnosis of Air Handling Units Using Generative Adversarial Networks

机译:建筑物能源效率解决方案:使用生成对抗网络自动化空气处理单元的故障诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automated fault diagnosis (AFD) for various energy consumption components is one of the main topics for energy efficiency solutions. However, the lack of faulty samples in the training process remains as a difficulty for data-driven AFD of heating, ventilation and air conditioning (HVAC) subsystems, such as air handling units (AHU). Existing works show that semi-supervised learning theories can effectively alleviate the issue by iteratively inserting newly tested faulty data samples into the training pool when the same fault happens again. However, a research gap exists between theoretical AFD algorithms and real-world applications. First, for real-world AFD applications, it is hard to predict the time when the same fault happens again. Second, the training set is required to be pre-defined and fixed before being packed into the building management system (BMS) for automatic HVAC fault diagnosis. The semi-supervised learning process of iteratively absorbing testing data into the training pool can be irrelevant for industrial usage of the AFD methods. Generative adversarial network (GAN) is well-known as an unsupervised learning technique to enrich the training pool with fake samples that are close to real faulty samples. In this study, a hybrid generative adversarial network (GAN) is proposed combining Wasserstein GAN with traditional classifiers to perform fault diagnosis mimicking the real-world scenarios with limited faulty training samples in the training process. Experimental results on real-world datasets demonstrate the effectiveness of the proposed approach for fault diagnosis problems of AHU subsystem.
机译:各种能耗组件的自动故障诊断(AFD)是能效解决方案的主要主题之一。然而,训练过程中缺乏错误的样本仍然是加热,通风和空调(HVAC)子系统(例如空气处理单元(AHU)的数据驱动的AFD。现有的作品表明,当同样的故障再次发生时,半监督学习理论可以通过迭代地插入训练池中的新测试故障数据样本来有效缓解问题。然而,在理论AFD算法和现实世界应用之间存在研究缺口。首先,对于真实世界的AFD应用程序,很难预测再次发生相同故障的时间。其次,需要预先定义和修复训练集,然后在包装到建筑物管理系统(BMS)中进行自动HVAC故障诊断。迭代地将测试数据的半监督学习过程进入训练池可能与AFD方法的工业用途无关。生成的对抗网络(GAN)是一种无人驾驶的学习技术,以丰富与靠近真正有缺陷样本的假样本的训练池。在本研究中,提出了一种混合生成的对抗网络(GaN)与传统分类器结合了Wassersein GaN,以执行训练过程中具有有限的故障训练样本的现实世界情景的故障诊断。实验结果对现实世界数据集展示了AHU子系统故障诊断问题的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号