首页> 外文OA文献 >3-List-coloring graphs of girth at least five on surfaces
【2h】

3-List-coloring graphs of girth at least five on surfaces

机译:3个列表着色图在表面上至少五个腰围

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Grotzsch proved that every triangle-free planar graph is 3-colorable.Thomassen proved that every planar graph of girth at least five is 3-choosable.As for other surfaces, Thomassen proved that there are only finitely many4-critical graphs of girth at least five embeddable in any fixed surface. Thisimplies a linear-time algorithm for deciding 3-colorablity for graphs of girthat least five on any fixed surface. Dvorak, Kral and Thomas strengthenedThomassen's result by proving that the number of vertices in a 4-critical graphof girth at least five is linear in its genus. They used this result to proveHavel's conjecture that a planar graph whose triangles are pairwise far enoughapart is 3-colorable. As for list-coloring, Dvorak proved that a planar graphwhose cycles of size at most four are pairwise far enough part is 3-choosable. In this article, we generalize these results. First we prove a linearisoperimetric bound for 3-list-coloring graphs of girth at least five. Many newresults then follow from the theory of hyperbolic families of graphs developedby Postle and Thomas. In particular, it follows that there are only finitelymany 4-list-critical graphs of girth at least five on any fixed surface, andthat in fact the number of vertices of a 4-list-critical graph is linear in itsgenus. This provides independent proofs of the above results while generalizingDvorak's result to graphs on surfaces that have large edge-width and yields asimilar result showing that a graph of girth at least five with crossingspairwise far apart is 3-choosable. Finally, we generalize to surfacesThomassen's result that every planar graph of girth at least five hasexponentially many distinct 3-list-colorings. Specifically, we show that everygraph of girth at least five that has a 3-list-coloring has$2^{Omega(n)-O(g)}$ distinct 3-list-colorings.
机译:GROTZSCH证明,每条三角形平面图是3可色的。睾丸证明,对于其他表面,周长的每个平面图至少为3-圆形。对于其他表面,证明只有有限的周围的关键症状五个嵌入任何固定表面。这是一种用于在任何固定表面上决定Girthat最少五个图形的3色力的线性时间算法。 DVORAK,KRAL和THOMAS通过证明4-关键的Graphof Graphof的顶点数量至少五个是线性的,在其属中,德拉克和托马斯强化了这一结果。他们使用这个结果来掌握的猜想,平面图三角形是足够的足球服的平面图是3可色的。对于名单着色,DVORAK证明了最多四个尺寸的平面图形循环是足够的部分是3可选择的。在本文中,我们概括了这些结果。首先,我们证明了至少五个颈部的3个名单着色图的线性因素。许多纽科尔州遵循由裙子和托马斯的图形的双曲族家族理论。特别地,在任何固定表面上只有五个腰围的有限的4个列出 - 临界图,并且实际上是4列出的临界图的顶点数是ITSGANU的线性。这提供了上述结果的独立证明,同时推出了具有大边缘宽度的表面上的图形,并产生两种结果,表明围绕围绕围绕的周围的腰围的图表是3选择的。最后,我们概括到Surfacesthomassen的结果,即周长的每个平面图至少有五个突出的三个列表着色。具体来说,我们表明周围的每只颈部至少有五个有3个名单着色的花费2 ^ { omega(n)-o(g)} $ distinct 3列表彩色。

著录项

  • 作者

    Luke Postle;

  • 作者单位
  • 年度 2021
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号