首页> 外文OA文献 >Discontinuous Hamiltonian Monte Carlo for discrete parameters and discontinuous likelihoods
【2h】

Discontinuous Hamiltonian Monte Carlo for discrete parameters and discontinuous likelihoods

机译:不连续的汉密尔顿蒙特卡洛离散参数和不连续可能性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hamiltonian Monte Carlo (HMC) is a powerful sampling algorithm employed byseveral probabilistic programming languages. Its fully automaticimplementations have made HMC a standard tool for applied Bayesian modeling.While its performance is often superior to alternatives under a wide range ofmodels, one weakness of HMC is its inability to handle discrete parameters. Inthis article, we present discontinuous HMC, an extension that can efficientlyexplore discrete parameter spaces as well as continuous ones. The proposedalgorithm is based on two key ideas: embedding of discrete parameters into acontinuous space and simulation of Hamiltonian dynamics on a piecewise smoothdensity function. The latter idea has been explored under special cases in theliterature, but the extensions introduced here are critical in turning the ideainto a general and practical sampling algorithm. Discontinuous HMC isguaranteed to outperform a Metropolis-within-Gibbs algorithm as the twoalgorithms coincide under a specific (and sub-optimal) implementation ofdiscontinuous HMC. It is additionally shown that the dynamics underlyingdiscontinuous HMC have a remarkable similarity to a zig-zag process, acontinuous-time Markov process behind a state-of-the-art non-reversiblerejection-free sampler. We apply our algorithm to challenging posteriorinference problems to demonstrate its wide applicability and superiorperformance.
机译:Hamiltonian Monte Carlo(HMC)是一种强大的采样算法,采用了概率的概率编程语言。它的全自动自动值为Applied Bayesian建模制作了HMC标准工具。当它的性能通常优于诸多墨水下的替代品,HMC的一个弱点是它无法处理离散参数。 Inthis文章,我们呈现不连续的HMC,可以有效地探索离散参数空间以及连续的扩展。 ProposalGorithm基于两个关键思想:在分段式光滑度函数上嵌入离散参数和哈密顿动力学的矛盾函数。后一种想法已经在Thelitising的特殊情况下探讨了,但这里介绍的扩展对于转动IdeaInto一种通用和实用的采样算法是至关重要的。不连续的HMC Isaanteed以优于Gibbs算法,因为在特定HMC的特定(和次最优)实现下的原始凝球仪中的算法。额外地表明underlyingdiscontinuous HMC动力学有显着的相似性,以Z字形后面状态的最先进的非reversiblerejection - 自由采样过程,acontinuous时间马尔可夫过程。我们将算法应用于挑战后验解问题,以展示其广泛的适用性和优越成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号