首页> 外文OA文献 >Pattern Recognition Using Relevant Vector Machine in Optical Fiber Vibration Sensing System
【2h】

Pattern Recognition Using Relevant Vector Machine in Optical Fiber Vibration Sensing System

机译:使用相关矢量机在光纤振动传感系统中的模式识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Invasion incident pattern recognition is crucial for a distributed optical fiber vibration sensing system based on a phase-sensitive time-domain reflectometer. Despite traditional pattern recognition identifying the vibration signal, the classification accuracy needs to be improved and the classifier requires probabilistic output, in order to ameliorate the performance of pattern recognition. A novel pattern recognition method is proposed in this paper. The characteristic vector is extracted from the original vibration signal by wavelet energy spectrum analysis. The probabilistic output is realized by the classification algorithm of a relevance vector machine. The optimal decomposition layer of the wavelet energy spectrum analysis is determined as six layers because of the compromise between the classification accuracy and the computational complexity. Taking into consideration the ground material and the weather, the experiments of three vibration patterns are carried out including walking through the fiber, striking on the fiber, and jogging along the fiber at 2, 5, and 8 km of the sensing fiber. With the help of 10-fold cross validation, the multi-classification confusion matrix is obtained in order to clarify the correct and incorrect classification results. Moreover, the performance measures, involving precision, recall rate, f-measure, and accuracy, are then analyzed. A classification macro-accuracy of 88.60% is finally obtained.
机译:入侵事件模式识别对于基于相位敏感时域反射计的分布式光纤振动传感系统至关重要。尽管传统的模式识别识别振动信号,但需要改进分类精度,并且分类器需要概率输出,以便改善模式识别的性能。本文提出了一种新颖的模式识别方法。通过小波能谱分析从原始振动信号中提取特征矢量。概率输出由相关矢量机的分类算法实现。小波能谱分析的最佳分解层被确定为六层,因为分类精度与计算复杂度之间的折衷。考虑到地面材料和天气,进行三个振动模式的实验,包括步行穿过纤维,在纤维上撞击,沿着感测纤维的2,5 km沿纤维慢跑。在10倍交叉验证的帮助下,获得多分类混淆矩阵,以澄清正确和不正确的分类结果。此外,然后分析了涉及精度,召回率,F测量和准确度的性能测量。最终获得88.60%的分类宏观精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号