首页> 外文OA文献 >Deep Learning Models Combining for Breast Cancer Histopathology Image Classification
【2h】

Deep Learning Models Combining for Breast Cancer Histopathology Image Classification

机译:深度学习模型结合乳腺癌组织病理学图像分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Breast cancer is one of the foremost reasons of death among women in the world. It has the largest mortality rate compared to the types of cancer accounting for 1.9 million per year in 2020. An early diagnosis may increase the survival rates. To this end, automating the analysis and the diagnosis allows to improve the accuracy and to reduce processing time. However, analyzing breast imagery's is non-trivial and may lead to experts' disagreements. In this research, we focus on breast cancer histopathological images acquired using the microscopic scan of breast tissues. We present combined two deep convolutional neural networks (DCNNs) to extract distinguished image features using transfer learning. The pre-trained Inception and the Xceptions models are used in parallel. Then, the feature maps are combined and reduced by dropout before being fed to the last fully connected layers for classification. We follow a sub-image classification then a whole image classification based on majority vote and maximum probability rules. Four tissue malignancy levels are considered: normal, benign, in situ carcinoma, and invasive carcinoma. The experimentations are performed to the Breast Cancer Histology (BACH) dataset. The overall accuracy for the sub-image classification is 97.29% and for the carcinoma cases the sensitivity achieved 99.58%. The whole image classification overall accuracy reaches 100% by majority vote and 95% by maximum probability fusion decision. The numerical results showed that our proposed approach outperforms the previous methods in terms of accuracy and sensitivity. The proposed design allows an extension to whole-slide histology images classification.
机译:乳腺癌是世界上女性死亡之一的原因之一。与2020年每年患有190万的癌症占癌症的类型而具有最大的死亡率。早期诊断可能会增加生存率。为此,自动化分析和诊断允许提高准确性并降低处理时间。然而,分析乳房图像的是非微不足道的,可能导致专家的分歧。在这项研究中,我们专注于使用乳腺组织的微观扫描获得的乳腺癌组织病理学图像。我们展示了两个深度卷积神经网络(DCNNS)来利用转移学习提取区分的图像特征。预先训练的开始和Xceptions模型并行使用。然后,在馈送到上次完全连接的层之前,通过丢弃组合并减少特征映射,以进行分类。我们遵循子图像分类,然后是基于多数票和最大概率规则的整个图像分类。四种组织恶性水平被认为是:正常,良性,原位癌和侵入性癌。对乳腺癌组织学(BACH)数据集进行实验。子图像分类的总体准确性为97.29%,对于癌病例而言,敏感性达到99.58%。通过最大概率融合决策,整体图像分类总体精度达到了100%和95%。数值结果表明,我们所提出的方法在准确性和敏感性方面优于先前的方法。所提出的设计允许扩展到整个幻灯片组织学图像分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号