首页> 外文OA文献 >History Matching of a Channelized Reservoir Using a Serial Denoising Autoencoder Integrated with ES-MDA
【2h】

History Matching of a Channelized Reservoir Using a Serial Denoising Autoencoder Integrated with ES-MDA

机译:信道化水库使用与ES-MDA集成的串行去噪AutoEncoder的历史匹配

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For an ensemble-based history matching of a channelized reservoir, loss of geological plausibility is challenging because of pixel-based manipulation of channel shape and connectivity despite sufficient conditioning to dynamic observations. Regarding the loss as artificial noise, this study designs a serial denoising autoencoder (SDAE) composed of two neural network filters, utilizes this machine learning algorithm for relieving noise effects in the process of ensemble smoother with multiple data assimilation (ES-MDA), and improves the overall history matching performance. As a training dataset of the SDAE, the static reservoir models are realized based on multipoint geostatistics and contaminated with two types of noise: salt and pepper noise and Gaussian noise. The SDAE learns how to eliminate the noise and restore the clean reservoir models. It does this through encoding and decoding processes using the noise realizations as inputs and the original realizations as outputs of the SDAE. The trained SDAE is embedded in the ES-MDA. The posterior reservoir models updated using Kalman gain are imported to the SDAE which then exports the purified prior models of the next assimilation. In this manner, a clear contrast among rock facies parameters during multiple data assimilations is maintained. A case study at a gas reservoir indicates that ES-MDA coupled with the noise remover outperforms a conventional ES-MDA. Improvement in the history matching performance resulting from denoising is also observed for ES-MDA algorithms combined with dimension reduction approaches such as discrete cosine transform, K-singular vector decomposition, and a stacked autoencoder. The results of this study imply that a well-trained SDAE has the potential to be a reliable auxiliary method for enhancing the performance of data assimilation algorithms if the computational cost required for machine learning is affordable.
机译:对于信道化储存器的基于集合的历史匹配,由于基于像素的操纵,因此由于足够的调节动态观察,因此基于像素的操纵,地质合理性的损失是具有挑战性的。关于作为人工噪声的损失,本研究设计了由两个神经网络过滤器组成的串行脱色自动化器(SDAE),利用该机器学习算法来缓解与多个数据同化(ES-MDA)的集合光滑过程中的噪声效应。提高整体历史匹配性能。作为SDAE的训练数据集,基于多点地统计学来实现静态储液模型,并污染两种类型的噪音:盐和辣椒噪音和高斯噪音。 SDAE了解如何消除噪音并恢复清洁的储层模型。它通过使用噪声实现作为输入和原始实现作为SDAE的输出来实现这一点。训练有素的SDAE嵌入在ES-MDA中。使用卡尔曼增益更新的后储层模型导入到SDAE,然后将纯化的前同化模型导出。以这种方式,维持在多个数据同化期间的岩石相参数的清晰对比度。在气体储存器处的案例研究表明ES-MDA与噪声去除器偶联优于传统的ES-MDA。对于ES-MDA算法,也观察到由​​去噪产生的历史匹配性能的改进,例如离散余弦变换,K-奇异矢量分解和堆叠的AutoEncoder等尺寸减少方法。本研究的结果意味着训练有素的SDAE具有可靠的辅助方法,以提高数据同化算法的性能,如果机器学习所需的计算成本是价格实的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号