首页> 外文OA文献 >Spatial-Spectral-Emissivity Land-Cover Classification Fusing Visible and Thermal Infrared Hyperspectral Imagery
【2h】

Spatial-Spectral-Emissivity Land-Cover Classification Fusing Visible and Thermal Infrared Hyperspectral Imagery

机译:空间光谱发射率土地覆盖分类熔断可见和热红外高光谱图像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High-resolution visible remote sensing imagery and thermal infrared hyperspectral imagery are potential data sources for land-cover classification. In this paper, in order to make full use of these two types of imagery, a spatial-spectral-emissivity land-cover classification method based on the fusion of visible and thermal infrared hyperspectral imagery is proposed, namely, SSECRF (spatial-spectral-emissivity land-cover classification based on conditional random fields). A spectral-spatial feature set is constructed considering the spectral variability and spatial-contextual information, to extract features from the high-resolution visible image. The emissivity is retrieved from the thermal infrared hyperspectral image by the FLAASH-IR algorithm and firstly introduced in the fusion of the visible and thermal infrared hyperspectral imagery; also, the emissivity is utilized in SSECRF, which contributes to improving the identification of man-made objects, such as roads and roofs. To complete the land-cover classification, the spatial-spectral feature set and emissivity are integrated by constructing the SSECRF energy function, which relates labels to the spatial-spectral-emissivity features, to obtain an improved classification result. The classification map performs a good result in distinguishing some certain classes, such as roads and bare soil. Also, the experimental results show that the proposed SSECRF algorithm efficiently integrates the spatial, spectral, and emissivity information and performs better than the traditional methods using raw radiance from thermal infrared hyperspectral imagery data, with a kappa value of 0.9137.
机译:高分辨率可见遥感图像和热红外高光谱图像是陆地覆盖分类的潜在数据源。在本文中,为了充分利用这两种类型的图像,提出了一种基于可见光和热红外高光谱图像融合的空间光谱发射率土地覆盖分类方法,即SSECRF(空间光谱 - 基于条件随机字段的发射率土地覆盖分类。考虑频谱可变性和空间上下文信息,构造光谱空间特征集,以从高分辨率可见图像中提取特征。通过FLAASH-IR算法从热红外高光谱图像中检索发射率,首先引入可见光和热红外高光谱图像的熔合;此外,发射率在SSECRF中使用,这有助于改善人造物体的识别,例如道路和屋顶。为了完成陆地覆盖分类,通过构建SSECRF能量函数来集成空间光谱特征集和发射率,该SSECRF能量函数将标签与空间光谱发射率特征相关,以获得改进的分类结果。分类地图在区分某些类别的情况下执行良好的结果,例如道路和裸机。此外,实验结果表明,所提出的算法SSECRF有效地集成了空间,光谱,和发射率信息,并执行优于使用原始辐射热红外高光谱图像数据的传统方法,用0.9137κ值为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号