首页> 外文OA文献 >Roller Bearing Fault Diagnosis Based on Adaptive Sparsest Narrow-Band Decomposition and MMC-FCH
【2h】

Roller Bearing Fault Diagnosis Based on Adaptive Sparsest Narrow-Band Decomposition and MMC-FCH

机译:基于自适应稀稀窄带分解和MMC-FCH的滚子轴承故障诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Adaptive sparsest narrow-band decomposition (ASNBD) method is proposed based on matching pursuit (MP) and empirical mode decomposition (EMD). ASNBD obtains the local narrow-band (LNB) components during the optimization process. Firstly, an optimal filter is designed. The parameter vector in the filter is obtained during optimization. The optimized objective function is a regulated singular local linear operator so that each obtained component is limited to be a LNB signal. Afterward, a component is generated by filtering the original signal with the optimized filter. Compared with MP, ASNBD is superior in both the physical meaning and the adaptivity. Drawbacks in EMD such as end effect and mode mixing are reduced in the proposed method because the application of interpolation function is not required. To achieve the fault diagnosis of roller bearings, raw signals are decomposed by ASNBD at first. Then, appropriate features of the decomposed results are chosen by applying distance evaluation technique (DET). Afterward, different faults are recognized by utilizing maximum margin classification based on flexible convex hulls (MMC-FCH). Comparisons between EMD and ASNBD show that the proposed method performs better in the antinoise performance, accuracy, orthogonality, and extracting the fault features of roller bearings.
机译:基于匹配追踪(MP)和经验模式分解(EMD),提出了自适应稀疏窄带分解(ASNBD)方法。 ASNBD在优化过程中获取本地窄带(LNB)的组件。首先,一个最佳滤波器被设计。优化过程中获得在过滤器中的参数向量。优化的目标函数是经调节单数本地线性算子,使每个获得的分量被限制为一个LNB信号。之后,通过过滤与所述优化的滤波器的原始信号而生成的成分。与MP相比,ASNBD在两个物理意义和适应性优越。在EMD缺点,如端部效应和模式的混合,因为不需要内插函数的应用在所提出的方法被减小。为了实现滚子轴承的故障诊断,原始信号是由ASNBD在第一分解。然后,将分解的结果的适当的特征是通过将距离评估技术(DET)选择的。随后,不同的故障由利用基于柔性凸壳(MMC-FCH)最大容限分类识别。 EMD和ASNBD之间的比较表明,在抗噪声性能,精度,正交性所提出的方法进行更好,并提取故障的滚子轴承的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号