首页> 外文OA文献 >Online Detection of Change on Information Streams in Wireless Sensor Network Modeled Using Gaussian Distribution
【2h】

Online Detection of Change on Information Streams in Wireless Sensor Network Modeled Using Gaussian Distribution

机译:使用高斯分布建模的无线传感器网络中信息流改变的在线检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wireless sensor network (WSN) is deployed to monitor certain physical quantities in a region. This monitoring problem could be stated as the problem of detecting a change in the parameters of a static or dynamic stochastic system. A moving window procedure is proposed to detect the systematic error, which occurs at an unknown time. It can detect the deviation in the mean of sensor measurements keeping variance as constant. The performance measures, such as the average run length (ARL) to detection delay and false alarms are computed for various window sizes. The performance comparison is done against traditional cumulative sum (CUSUM) method. The detection of change in mean using CUSUM is done with smaller delay compared to the proposed moving window detection procedure. In order to calculate CUSUM statistics, the number of measurements to keep in sensor memory increases with time. However, in the proposed moving window detection procedure, the number of stored measurements is limited by the size of the window. Therefore, it is advantageous to use the moving window procedure for change detection in sensor nodes that have very limited memory. A high probability of detection is achieved at the cost of larger window size and higher detection delay. However, we are able to achieve the maximum probability of detection even at a window size of 11.
机译:部署无线传感器网络(WSN)以监控区域中的某些物理量。该监测问题可以表示为检测静态或动态随机系统参数的变化的问题。提出了一种移动窗口过程来检测系统误差,该误差发生在未知时间。它可以检测传感器测量的平均值中的偏差,保持方差常数。为各种窗口尺寸计算了检测延迟和误报的平均运行长度(ARL)等性能测量。对传统累积和(CUSUM)方法进行了性能比较。与所提出的移动窗口检测过程相比,使用CUSUM的平均值的变化检测。为了计算CuSum统计,以在传感器内存中保持的测量次数随时间而增加。然而,在所提出的移动窗口检测过程中,所存储的测量的数量受窗口大小的限制。因此,有利的是使用移动窗口过程以在具有非常有限的传感器节点中改变检测的移动窗口过程。在较大的窗口尺寸和更高的检测延迟的成本下实现了高概率。然而,即使在11的窗口大小为11,我们也能够实现最大的检测概率。

著录项

  • 作者

    B. Victoria Jancee; S. Radha;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号