首页> 外文OA文献 >Analysis of a micro–macro acceleration method with minimum relative entropy moment matching
【2h】

Analysis of a micro–macro acceleration method with minimum relative entropy moment matching

机译:具有最小相对熵力匹配的微米加速法分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We analyse convergence of a micro-macro acceleration method for the MonteCarlo simulation of stochastic differential equations with time-scaleseparation between the (fast) evolution of individual trajectories and the(slow) evolution of the macroscopic function of interest. We consider a classof methods, presented in [Debrabant, K., Samaey, G., Zieli'nski, P. Amicro-macro acceleration method for the Monte Carlo simulation of stochasticdifferential equations. SINUM, 55 (2017) no. 6, 2745-2786], that performs shortbursts of path simulations, combined with the extrapolation of a fewmacroscopic state variables forward in time. After extrapolation, a newmicroscopic state is then constructed, consistent with the extrapolatedvariable and minimising the perturbation caused by the extrapolation. In thepresent paper, we study a specific method in which this perturbation isminimised in a relative entropy sense. We discuss why relative entropy is auseful metric, both from a theoretical and practical point of view, andrigorously study local errors and numerical stability of the resulting methodas a function of the extrapolation time step and the number of macroscopicstate variables. Using these results, we discuss convergence to the fullmicroscopic dynamics, in the limit when the extrapolation time step tends tozero and the number of macroscopic state variables tends to infinity.
机译:我们分析了随机微分方程的蒙特卡洛模拟微型宏加速方法的收敛性,其中单个轨迹(快速)演变与宏观函数的宏观函数的(缓慢)演变之间的时间秤分析。我们考虑了一种类别的方法,呈现在[瓦布拉巴特,K.,Samaey,G.,Zieli 'NSKI,P.Amicro-Macro加速法的蒙特卡罗模拟随机特性方程的蒙特卡罗模拟。 SINUM,55(2017)没有。 6,2745-2786],执行路径模拟的脆性,结合在时间上向前向前的几种态变量的外推。外推后,然后构建新的静脉曲张,与外推度和最小化由外推引起的扰动一致。在本文中,我们研究了一种特定的方法,其中这种扰动在相对熵意义上被测了。我们讨论了为什么相对熵是来自理论和实践的特征度量,既从理论和实践的观点,又在于所得方法的局部误差和数值稳定性的外推时间步骤和宏观静态变量的数量。使用这些结果,我们讨论到全镜动力学的收敛,在外推时间步骤趋于tozero时,宏观状态变量的数量趋于无穷大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号