首页> 外文OA文献 >Adaptive estimation of the rank of the coefficient matrix in high-dimensional multivariate response regression models
【2h】

Adaptive estimation of the rank of the coefficient matrix in high-dimensional multivariate response regression models

机译:高维多元响应回归模型中系数矩阵等级的自适应估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the multivariate response regression problem with a regressioncoefficient matrix of low, unknown rank. In this setting, we analyze a newcriterion for selecting the optimal reduced rank. This criterion differsnotably from the one proposed in Bunea, She and Wegkamp [7] in that it does notrequire estimation of the unknown variance of the noise, nor depends on adelicate choice of a tuning parameter. We develop an iterative, fullydata-driven procedure, that adapts to the optimal signal to noise ratio. Thisprocedure finds the true rank in a few steps with overwhelming probability. Ateach step, our estimate increases, while at the same time it does not exceedthe true rank. Our finite sample results hold for any sample size and anydimension, even when the number of responses and of covariates grow much fasterthan the number of observations. We perform an extensive simulation study thatconfirms our theoretical findings. The new method performs better and morestable than that in [7] in both low- and high-dimensional settings.
机译:我们考虑了具有低,未知等级的回归矩阵的多变量响应回归问题。在此设置中,我们分析了一种用于选择最佳降低等级的新克明。该标准与Bunea,Shea和Wegkamp中提出的那个差异很大,因为它确实不当估计噪声的未知方差,也不取决于调谐参数的侧面选择。我们开发迭代,完全驱动的过程,适应最佳信号到噪声比。在几个步骤中,此企业尺寸以压倒性概率找到真正的等级。徒步一步,我们的估计增加,同时它不超过真正的等级。我们的有限样本结果适用于任何样本大小和任何模具,即使响应和协变量的数量增长了很多,也会变得更加促使观察人数。我们执行广泛的仿真研究,这对我们的理论发现。新方法在低维和高维设置中的[7]中的性能更好,更为兴奋。

著录项

  • 作者

    Xin Bing; Marten H. Wegkamp;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号