首页> 外文OA文献 >An Evaluation of Forest Health Insect and Disease Survey Data and Satellite-Based Remote Sensing Forest Change Detection Methods: Case Studies in the United States
【2h】

An Evaluation of Forest Health Insect and Disease Survey Data and Satellite-Based Remote Sensing Forest Change Detection Methods: Case Studies in the United States

机译:森林卫生昆虫和疾病调查数据与卫星遥感森林变革检测方法评价:美国案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Operational Remote Sensing (ORS) program leverages Landsat and MODIS data to detect forest disturbances across the conterminous United States (CONUS). The ORS program was initiated in 2014 as a collaboration between the US Department of Agriculture Forest Service Geospatial Technology and Applications Center (GTAC) and the Forest Health Assessment and Applied Sciences Team (FHAAST). The goal of the ORS program is to supplement the Insect and Disease Survey (IDS) and MODIS Real-Time Forest Disturbance (RTFD) programs with imagery-derived forest disturbance data that can be used to augment traditional IDS data. We developed three algorithms and produced ORS forest change products using both Landsat and MODIS data. These were assessed over Southern New England and the Rio Grande National Forest. Reference data were acquired using TimeSync to conduct an independent accuracy assessment of IDS, RTFD, and ORS products. Overall accuracy for all products ranged from 71.63% to 92.55% in the Southern New England study area and 63.48% to 79.13% in the Rio Grande National Forest study area. While the accuracies attained from the assessed products are somewhat low, these results are similar to comparable studies. Although many ORS products met or exceeded the overall accuracy of IDS and RTFD products, the differences were largely statistically insignificant at the 95% confidence interval. This demonstrates the current implementation of ORS is sufficient to provide data to augment IDS data.
机译:操作遥感(ORS)程序利用LANDSAT和MODIS数据来检测整个美国美国(康明斯)的森林障碍。 2014年的纲要计划于2014年作为美国农业森林服务地理空间技术和应用中心(GTAC)和森林健康评估和应用科学团队(FHAAST)之间的合作。或者计划的目标是补充昆虫和疾病调查(IDS)和MODIS实时森林扰动(RTFD)程序,其可用于增强传统ID数据的图像衍生的森林扰动数据。我们开发了三种算法和使用Landsat和Modis数据产生的森林更改产品。这些被评估在新英格兰南部和里约格兰德国家森林。使用Timeyync获取参考数据,以对IDS,RTFD和ORS产品进行独立的准确性评估。所有产品的整体准确性范围从新英格兰南部的71.63%到92.55%到92.55%,在里约兰德国家森林研究区的63.48%至79.13%。虽然评估产物所获得的准确性略低,但这些结果类似于可比性研究。虽然许多或产品达到或超过IDS和RTFD产品的整体准确性,但在95%置信区间的差异上差异在统计学上微不足道。这证明了当前实现或者足以提供数据以增强IDS数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号