首页> 外文OA文献 >Semantic-Segmentation-Based Rail Fastener State Recognition Algorithm
【2h】

Semantic-Segmentation-Based Rail Fastener State Recognition Algorithm

机译:基于语义分割的轨静电状态识别算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rail fastener status recognition and detection are key steps in the inspection of the rail area status and function of real engineering projects. With the development of and widespread interest in image processing techniques and deep learning theory, detection methods that combine the two have yielded promising results in practical detection applications. In this paper, a semantic-segmentation-based algorithm for the state recognition of rail fasteners is proposed. On the one hand, we propose a functional area location and annotation method based on a salient detection model and construct a novel slab-fastclip-type rail fastener dataset. On the other hand, we propose a semantic-segmentation-framework-based model for rail fastener detection, where we detect and classify rail fastener states by combining the pyramid scene analysis network (PSPNet) and vector geometry measurements. Experimental results prove the validity and superiority of the proposed method, which can be introduced into practical engineering projects.
机译:轨紧固件状态识别和检测是检测轨道区域状态和实际工程项目功能的关键步骤。随着在图像处理技术和深度学习理论中的发展和广泛的兴趣,组合两者的检测方法在实际检测应用中产生了有希望的结果。本文提出了一种基于语义分割的轨道紧固件识别的算法。一方面,我们提出了一种基于突出检测模型的功能区域位置和注释方法,构建了一种新型板坯 - Fastclip型轨紧固件数据集。另一方面,我们提出了一种基于语义分割框架的轨道紧固件检测模型,在那里我们通过组合金字塔场景分析网络(PSPNET)和向量几何测量来检测和分类轨固定状态。实验结果证明了所提出的方法的有效性和优越性,可引入实用工程项目。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号