首页> 外文OA文献 >Sliced-Inverse-Regression--Aided Rotated Compressive Sensing Method for Uncertainty Quantification
【2h】

Sliced-Inverse-Regression--Aided Rotated Compressive Sensing Method for Uncertainty Quantification

机译:切片 - 反回源辅助旋转压缩传感方法,用于不确定量化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Compressive-sensing-based uncertainty quantification methods have become apow- erful tool for problems with limited data. In this work, we use the slicedinverse regression (SIR) method to provide an initial guess for the alternatingdirection method, which is used to en- hance sparsity of the Hermite polynomialexpansion of stochastic quantity of interest. The sparsity improvementincreases both the efficiency and accuracy of the compressive-sensing- baseduncertainty quantification method. We demonstrate that the initial guess fromSIR is more suitable for cases when the available data are limited (Algorithm4). We also propose another algorithm (Algorithm 5) that performs dimensionreduction first with SIR. Then it constructs a Hermite polynomial expansion ofthe reduced model. This method affords the ability to approximate thestatistics accurately with even less available data. Both methods arenon-intrusive and require no a priori information of the sparsity of thesystem. The effec- tiveness of these two methods (Algorithms 4 and 5) aredemonstrated using problems with up to 500 random dimensions.
机译:基于压缩的感应的不确定性量化方法已成为有限数据问题的融合工具。在这项工作中,我们使用Slictiversverse回归(SIR)方法来为交替的顺序方法提供初始猜测,该方法用于包括随机感兴趣的随机数量的Hermite PolynomiageLoxion的稀疏性。稀疏性提高了压缩感应的效率和准确性的效率和准确性。我们证明,当可用数据有限时,初始猜测FROMSIR更适合于情况(算法4)。我们还提出了另一种算法(算法5),首先用SIR执行维度。然后它构成了减少模型的Hermite多项式膨胀。这种方法能够使用较少的可用数据准确地近似奇异。两种方法都是侵扰性的,并且不需要对体系的稀疏性的先验信息。这两种方法的效果(算法4和5)使用多达500个随机尺寸的问题进行扰动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号