We construct minimax optimal non-asymptotic confidence sets for low rankmatrix recovery algorithms such as the Matrix Lasso or Dantzig selector. Theseare employed to devise adaptive sequential sampling procedures that guaranteerecovery of the true matrix in Frobenius norm after a data-driven stopping time$hat n$ for the number of measurements that have to be taken. With highprobability, this stopping time is minimax optimal. We detail applications toquantum tomography problems where measurements arise from Pauli observables. Wealso give a theoretical construction of a confidence set for the density matrixof a quantum state that has optimal diameter in nuclear norm. Thenon-asymptotic properties of our confidence sets are further investigated in asimulation study.
展开▼
机译:我们为低randmatrix恢复算法构建Minimax最佳非渐近置信集,例如矩阵套索或Dantzig选择器。该死的,用于设计自适应顺序采样程序,以便在数据驱动停止时间$ hat n $ hat n $ hat n $的弗罗贝尼斯标准中担保真正的矩阵。具有高可生物,该停止时间最佳。我们详细介绍了在Pauli可观察到产生的测量结果的临近断层扫描问题。 Wealso为核标准具有最佳直径的量子状态,提供了一个具有最佳直径的密度矩阵的置信度的理论结构。在刺绣研究中进一步研究了我们信心集的渐近性质。
展开▼