首页> 外文OA文献 >Method-Induced Errors in Fractal Analysis of Lung Microscopic Images Segmented with the Use of HistAENN (Histogram-Based Autoencoder Neural Network)
【2h】

Method-Induced Errors in Fractal Analysis of Lung Microscopic Images Segmented with the Use of HistAENN (Histogram-Based Autoencoder Neural Network)

机译:用Histaenn(基于直方图的Autorencoder神经网络)分段的肺显微镜图像分形分析中的方法诱导的误差

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The designing of Computer-Aided Diagnosis (CADx) is necessary to improve patient condition analysis and reduce human error. HistAENN (Histogram-based Autoencoder Neural Network, the first hierarchy level) and the fractal-based estimator (the second hierarchy level) are assumed for segmentation and image analysis, respectively. The aim of the study is to investigate how to select or preselect algorithms at the second hierarchy level algorithm using small data sets and the semisupervised training principle. Method-induced errors are evaluated using the Monte Carlo test and an overlapping table is proposed for the rejection or tentative acceptance of particular segmentation and fractal analysis algorithms. This study uses lung histological slides and the results show that 2D box-counting substantially outweighs lacunarity for considered configurations. These findings also suggest that the proposed method is applicable for further designing of classification algorithms, which is essential for researchers, software developers, and forensic pathologist communities.
机译:计算机辅助诊断(CADX)的设计是改善患者状况分析并减少人为错误的必要条件。 Histaenn(基于直方图的AutoEncoder神经网络,第一层级)和基于分数基的估计器(第二层级)分别被假定分割和图像分析。该研究的目的是研究如何使用小型数据集和半培训训练原理在第二层级算法中选择或预先选择算法。使用蒙特卡罗测试评估方法诱导的误差,并且提出了重叠表,用于抑制或暂定特定分割和分形分析算法的抑制或暂定接受。该研究使用肺组织学载玻片,结果表明,2D盒计数基本上超过了考虑配置的曲线性。这些调查结果还表明,该方法适用于进一步设计分类算法,这对于研究人员,软件开发商和法医病理学家社区至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号