首页> 外文OA文献 >Linear and Nonlinear Regression Methods for Equilibrium Modelling ofp-Nitrophenol Biosorption byRhizopus oryzae: Comparison of Error Analysis Criteria
【2h】

Linear and Nonlinear Regression Methods for Equilibrium Modelling ofp-Nitrophenol Biosorption byRhizopus oryzae: Comparison of Error Analysis Criteria

机译:用于平衡模型的线性和非线性回归方法,PP - 硝基苯酚生物吸附Byrhizopus oryzae:误差分析标准的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The study assessed the applicability of Rhizopus oryzae dead fungi as a biosorbent medium for p-nitrophenol (p-NP) removal from aqueous phase. The extent of biosorption was measured through five equilibrium sorption isotherms represented by the Langmuir, Freundlich, Redlich-Peterson, multilayer and Fritz-Schlunder models. Linear and nonlinear regression methods were compared to determine the best-fitting equilibrium model to the experimental data. A detailed error analysis was undertaken to investigate the effect of applying seven error criteria for the determination of the single-component isotherm parameters. According to the comparison of the error functions and to the estimation of the corrected Akaike information criterion (), the Freundlich equation was ranked as the first and the Fritz-Schlunder as the second best-fitting models describing the experimental data. The present investigations proved the high efficiency (94%) of Rhizopus Oryzae as an alternative adsorbent for p-NP removal from aqueous phase and revealed the mechanism of the separation process.
机译:该研究评估了Rhizopus Oryzae死真菌的适用性作为从水相中除去p-硝基苯酚(P-NP)的生物吸附培养基。通过由Langmuir,Freundlich,Redlich-Peterson,Multidayer和Fricz-Schlunder模型代表的五个平衡吸附等温线测量生物吸附程度。比较线性和非线性回归方法以确定对实验数据的最佳平衡模型。进行了详细的错误分析,以研究应用七个误差标准的效果确定单组分等温参数的确定。根据误差函数的比较和估计校正的Akaike信息标准(),Freundlich方程被排名为第一和Fritz-Schlunder作为描述实验数据的第二个最佳拟合模型。本研究证明了Rhizopus Oryzae的高效率(94%)作为从水相去除的替代吸附剂,并揭示了分离过程的机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号