首页> 外文OA文献 >Different Microgreen Genotypes Have Unique Growth and Yield Responses to Intensity of Supplemental PAR from Light-emitting Diodes during Winter Greenhouse Production in Southern Ontario, Canada
【2h】

Different Microgreen Genotypes Have Unique Growth and Yield Responses to Intensity of Supplemental PAR from Light-emitting Diodes during Winter Greenhouse Production in Southern Ontario, Canada

机译:在加拿大安大略省南部的冬季温室生产期间,不同的微格基因型具有独特的生长和对来自发光二极管的补充二极管强度的产量反应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

AbstractLow natural daily light integrals (DLIs) are a major limiting factor for greenhouse production during darker months (e.g., October to February in Canada). Supplemental lighting (SL) is commonly used to maintain crop productivity and quality during these periods, particularly when the supply chain demands consistent production levels year-round. What remains to be determined are the optimum SL light intensities (LIs) for winter production of a myriad of different commodities. The present study investigated the growth and yield of sunflower (Helianthus annuus L., ‘Black oil’), kale (Brassica napus L., ‘Red Russian’), arugula (Eruca sativa L.), and mustard (Brassica juncea L., ‘Ruby Streaks’), grown as microgreens, in a greenhouse under SL light-emitting diode (LED) photosynthetic photon flux density (PPFD) levels ranging from 17.0 to 304 μmol·m−2·s−1 with a 16-hour photoperiod (i.e., supplemental DLIs from 1.0 to 17.5 mol·m−2·d−1). Crops were sown in a commercial greenhouse near Hamilton, ON, Canada (lat. 43°14′N, long. 80°07′W) on 1 Feb. 2018, and harvested after 8, 11, 12, and 12 days, resulting in average natural DLIs of 6.5, 5.9, 6.2, and 6.2 mol·m−2·d−1 for sunflower, kale, arugula, and mustard, respectively. Corresponding total light integrals (TLIs) ranged from 60 to 188 mol·m−2 for sunflower, 76 to 258 mol·m−2 for kale, 86 to 280 mol·m−2 for arugula, and 86 to 284 mol·m−2 for mustard. Fresh weight (i.e., marketable yield) increased asymptotically with increasing LI and leaf area increased linearly with increasing LI, in all genotypes. Hypocotyl length of mustard decreased and hypocotyl diameter of sunflower, arugula, and mustard increased with increasing LI. Dry weight, robust index, and relative chlorophyll content increased and specific leaf area decreased in kale, arugula, and mustard with increasing LI. Commercial microgreen greenhouse growers can use the light response models described herein to predict relevant production metrics according to the available (natural and supplemental) light levels to select the most appropriate SL LI to achieve the desired production goals as economically as possible.
机译:抽象的低自然日光积分(DLIS)是温室生产的主要限制因素在较暗的月份(例如,10月,加拿大的2月)。补充照明(SL)通常用于在这些时期保持作物生产率和质量,特别是当供应链期间需要全年的生产水平一致。仍有待确定的是最佳的SL光强度(LIS),用于冬季生产多种不同的商品。本研究调查了向日葵的生长和产量(Helianthus Annuus L.,'Black Oil'),甘蓝(Brassica Napus L.,'Redmens'),芝麻菜(Eruca Sativa L.)和芥末(Brassica Juncea L. ,作为微僵,在SL发光二极管(LED)下的温室中,“Ruby条纹”)在SL发光二极管(LED)光合光子通量密度(PPFD)水平为16.0至304μmol·M-2·S-1,为16小时光周期(即,补充DLIS从1.0至17.5mol·m-2·d-1)。在加拿大汉密尔顿附近的商业温室播种,加拿大哈密尔顿(Lat。43°14'n,长。80°07'W)于2018年2月1日,并在8,11,12和12天后收获,产生平均自然DLIS为6.5,5.9,6.2和6.2mol·M-2·D-1,分别用于向日葵,羽衣甘蓝,芝麻菜和芥末。对应的总光线(TLI)为向日葵的60至188mol·M-2范围为76至258mol·M-2,用于甘蓝的86至280mol·M-2,86至284mol·m- 2用于芥末。随着Li和Leafens的增加随着Li的增加而增加,李和叶面积在所有基因型中,李和叶面积增加,渐近渐近,随着李,叶面积越来越大。芥菜芥末胶囊长度降低,向日葵,芝麻菜和芥末的缺口直径随着LI的增加而增加。随着LI的增加,羽衣甘露甘露甘蓝和芥末,干重,鲁棒指标和相对叶绿素含量增加和特定叶面积。商用MicroGreen温室种植者可以使用这里描述的光响应模型来根据可用(自然和补充)光线水平来预测相关的生产指标,以选择最合适的SL LI,以尽可能经济地实现所需的生产目标。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号