...
首页> 外文期刊>HortScience >Different Microgreen Genotypes Have Unique Growth and Yield Responses to Intensity of Supplemental PAR from Light-emitting Diodes during Winter Greenhouse Production in Southern Ontario, Canada
【24h】

Different Microgreen Genotypes Have Unique Growth and Yield Responses to Intensity of Supplemental PAR from Light-emitting Diodes during Winter Greenhouse Production in Southern Ontario, Canada

机译:在加拿大南部的冬季温室生产期间,不同的微霉菌基因型对发光二极管的补充二极管强度具有独特的生长和产量响应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Low natural daily light integrals (DLIs) are a major limiting factor for greenhouse production during darker months (e.g., October to February in Canada). Supplemental lighting (SL) is commonly used to maintain crop productivity and quality during these periods, particularly when the supply chain demands consistent production levels year-round. What remains to be determined are the optimum SL light intensities (LIs) for winter production of a myriad of different commodities. The present study investigated the growth and yield of sunflower (Helianthus annuus L., 'Black oil'), kale (Brassica napus L., 'Red Russian'), arugula (Eruca sativa L.), and mustard (Brassica juncea L., 'Ruby Streaks'), grown as microgreens, in a greenhouse under SL lightemitting diode (LED) photosynthetic photon flux density (PPFD) levels ranging from 17.0 to 304 mmol.m(-2).s(-1) with a 16-hour photoperiod (i.e., supplemental DLIs from 1.0 to 17.5 mol.m(-2) .d(-1)). Crops were sown in a commercial greenhouse near Hamilton, ON, Canada (lat. 43 degrees 14'N, long. 80807#W) on 1 Feb. 2018, and harvested after 8, 11, 12, and 12 days, resulting in average natural DLIs of 6.5, 5.9, 6.2, and 6.2 mol.m(-2).d(-1) for sunflower, kale, arugula, and mustard, respectively. Corresponding total light integrals (TLIs) ranged from 60 to 188 mol.m(-2) for sunflower, 76 to 258 mol.m(-2) for kale, 86 to 280 mol.m(-2) for arugula, and 86 to 284 mol.m(-2) for mustard. Fresh weight (i.e., marketable yield) increased asymptotically with increasing LI and leaf area increased linearly with increasing LI, in all genotypes. Hypocotyl length of mustard decreased and hypocotyl diameter of sunflower, arugula, and mustard increased with increasing LI. Dry weight, robust index, and relative chlorophyll content increased and specific leaf area decreased in kale, arugula, and mustard with increasing LI. Commercial microgreen greenhouse growers can use the light response models described herein to predict relevant production metrics according to the available (natural and supplemental) light levels to select the most appropriate SL LI to achieve the desired production goals as economically as possible.
机译:低自然日光积分(DLIS)是温室生产在较暗的月份的主要限制因素(例如,加拿大的10月至2月)。辅助照明(SL)通常用于在这些时期保持作物生产力和质量,特别是当供应链期待一致的生产水平期间。仍有待确定的是最佳的SL光强度(LIS),用于冬季生产多种不同的商品。本研究调查了向日葵(Helianthus Annuus L.,'Black Oil')的生长和产量,甘蓝(Brassica Napus L.,'Redman),芝麻菜(Eruca Sativa L.)和芥末(Brassica Juncea L. ,“Ruby条纹”),生长为微僵,在SL发光二极管(LED)光合光子通量密度(PPFD)水平为17.0至304mmol.m(-2)。(-1),(-1),有16 -hour photopheriod(即,从1.0至17.5 mol.m(-2).d(-1)的补充DLIS。在加拿大汉密尔顿附近的商业温室播种(Lat。43摄氏度,长。80807#w)于2018年2月1日播种,并在8,11,12和12天后收获,均为平均值自然DLIS为6.5,5.9,6.2和6.2 mol.m(-2).d(-1),分别用于向日葵,羽衣甘蓝,芝麻菜和芥末。对应的总光线(TLI)为向日葵的60至188 mol.m(-2),76至258 mol.m(-2)用于甘蓝,86至280 mol.m(-2),以及86芥末至284mol.m(-2)。随着Li和LiNear的增加随着Li的增加而增加,李和叶面积在所有基因型中,李和叶面积增加,渐近渐近,李和叶面积增加。芥菜的芥末长度降低,向日葵,芝麻菜和芥末的下胚轴直径随着LI的增加而增加。随着李的增加,干重,鲁棒指标和相对叶绿素含量增加和特异性叶面积降低。商用MicroGreen温室种植者可以使用本文所述的光响应模型来根据可用(自然和补充)光线水平来预测相关的生产指标,以选择最合适的SL Li,以尽可能地经济地实现所需的生产目标。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号