首页> 外文OA文献 >Precipitation Nowcasting with Orographic Enhanced Stacked Generalization: Improving Deep Learning Predictions on Extreme Events
【2h】

Precipitation Nowcasting with Orographic Enhanced Stacked Generalization: Improving Deep Learning Predictions on Extreme Events

机译:随着地形增强的堆叠概括地降量漫游:改善极端事件的深度学习预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the most crucial applications of radar-based precipitation nowcasting systems is the short-term forecast of extreme rainfall events such as flash floods and severe thunderstorms. While deep learning nowcasting models have recently shown to provide better overall skill than traditional echo extrapolation models, they suffer from conditional bias, sometimes reporting lower skill on extreme rain rates compared to Lagrangian persistence, due to excessive prediction smoothing. This work presents a novel method to improve deep learning prediction skills in particular for extreme rainfall regimes. The solution is based on model stacking, where a convolutional neural network is trained to combine an ensemble of deep learning models with orographic features, doubling the prediction skills with respect to the ensemble members and their average on extreme rain rates, and outperforming them on all rain regimes. The proposed architecture was applied on the recently released TAASRAD19 radar dataset: the initial ensemble was built by training four models with the same TrajGRU architecture over different rainfall thresholds on the first six years of the dataset, while the following three years of data were used for the stacked model. The stacked model can reach the same skill of Lagrangian persistence on extreme rain rates while retaining superior performance on lower rain regimes.
机译:基于雷达的降水系统最重要的应用之一是极端降雨事件的短期预测,如闪光洪水和严重雷暴。虽然深入学习的展望模型最近显示出比传统的回声外推模型提供更好的整体技能,但由于过度预测平滑,它们遭受条件偏见,有时会报告对极端雨率的较低技能。这项工作提出了一种提高深度降雨制度的深度学习预测技能的新方法。该解决方案基于模型堆叠,其中卷积神经网络培训,以将深度学习模型的集合与地形特征相结合,使其与集合成员的预测技巧加倍,并且它们对极端雨率的平均值,以及所有人雨制度。拟议的架构应用于最近发布的TAASRAD19 RADAR数据集:初始合奏是通过在数据集的前六年的不同降雨阈值上使用相同的Trajgru架构进行四种模型来构建,而以下三年的数据用于堆叠的模型。堆叠的模型可以在极端雨率上达到拉格朗日持久性的相同技能,同时在较低的雨水制度上保持卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号