首页> 外文OA文献 >Computational Modeling and Experimental Characterization of Martensitic Transformations in Nicoal for Self-Sensing Materials
【2h】

Computational Modeling and Experimental Characterization of Martensitic Transformations in Nicoal for Self-Sensing Materials

机译:尼加尔镍马氏体转化对自感应材料的计算建模与实验性状

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fundamental changes to aero-vehicle management require the utilization of automated health monitoring of vehicle structural components. A novel method is the use of self-sensing materials, which contain embedded sensory particles (SP). SPs are micron-sized pieces of shape-memory alloy that undergo transformation when the local strain reaches a prescribed threshold. The transformation is a result of a spontaneous rearrangement of the atoms in the crystal lattice under intensified stress near damaged locations, generating acoustic waves of a specific spectrum that can be detected by a suitably placed sensor. The sensitivity of the method depends on the strength of the emitted signal and its propagation through the material. To study the transition behavior of the sensory particle inside a metal matrix under load, a simulation approach based on a coupled atomistic-continuum model is used. The simulation results indicate a strong dependence of the particle's pseudoelastic response on its crystallographic orientation with respect to the loading direction and suggest possible ways of optimizing particle sensitivity. The technology of embedded sensory particles will serve as the key element in an autonomous structural health monitoring system that will constantly monitor for damage initiation in service, which will enable quick detection of unforeseen damage initiation in real-time and during onground inspections.
机译:空运管理的根本变化需要利用车辆结构部件的自动健康监测。一种新方法是使用含有嵌入的感觉颗粒(SP)的自感应材料。 SPS是微米尺寸的形状记忆合金,当局部应变达到规定的阈值时经过转换。该变换是在损坏位置靠近损坏位置的强度应力下的晶格中的原子自发地重新排列的结果,产生可以通过适当放置的传感器检测的特定光谱的声波。该方法的灵敏度取决于发射信号的强度及其通过材料的传播。为了在负载下研究金属基质内的感觉颗粒的过渡行为,使用基于耦合原子连续模型的模拟方法。仿真结果表明颗粒的假致响应对加载方向的晶体取向的强烈依赖性,并表明了优化粒子敏感性的可能方法。嵌入式感官颗粒技术将作为自主结构健康监测系统中的关键元件,该系统将不断监测服务的损坏启动,这将能够在实时和在地面检查期间快速检测不可预见的损害启动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号