首页> 外文OA文献 >Accurate Recognition and Simulation of 3D Visual Image of Aerobics Movement
【2h】

Accurate Recognition and Simulation of 3D Visual Image of Aerobics Movement

机译:有氧运动的3D视觉图像准确识别和仿真

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The structure of the deep artificial neural network is similar to the structure of the biological neural network, which can be well applied to the 3D visual image recognition of aerobics movements. A lot of results have been achieved by applying deep neural networks to the 3D visual image recognition of aerobics movements, but there are still many problems to be overcome. After analyzing the expression characteristics of the convolutional neural network model for the three-dimensional visual image characteristics of aerobics, this paper builds a convolutional neural network model. The model is improved on the basis of the traditional model and unifies the process of aerobics 3D visual image segmentation, target feature extraction, and target recognition. The convolutional neural network and the deep neural network based on autoencoder are designed and applied to aerobics action 3D visual image test set for recognition and comparison. We improve the accuracy of network recognition by adjusting the configuration parameters in the network model. The experimental results show that compared with other simple models, the model based on the improved AdaBoost algorithm can improve the final result significantly when the accuracy of each model is average. Therefore, the method can improve the recognition accuracy when multiple neural network models with general accuracy are obtained, thereby avoiding the complicated parameter adjustment process to obtain a single optimal network model.
机译:深层人工神经网络的结构类似于生物神经网络的结构,这可以很好地应用于有氧运动的3D视觉图像识别。通过将深神经网络应用于有氧运动的3D视觉图像识别,已经实现了许多结果,但仍有许多问题需要克服。在分析有氧运动的三维视觉图像特征的卷积神经网络模型的表达特征之后,本文建立了卷积神经网络模型。该模型在传统模型的基础上得到改进,并统一有氧运动3D视觉图像分割,目标特征提取和目标识别过程。基于AutoEncoder的卷积神经网络和基于AutoEncoder的深神经网络,并应用于有氧运动3D视觉图像测试设置,用于识别和比较。通过调整网络模型中的配置参数,我们提高网络识别的准确性。实验结果表明,与其他简单模型相比,基于改进的Adaboost算法的模型可以在每个模型的准确性平均时显着提高最终结果。因此,当获得具有一般精度的多个神经网络模型时,该方法可以提高识别精度,从而避免了复杂的参数调整过程以获得单个最佳网络模型。

著录项

  • 作者

    Wenhua Fan; Hyun Joo Min;

  • 作者单位
  • 年度 2020
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号