首页> 外文OA文献 >Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery
【2h】

Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery

机译:高分辨率光学图像中海冰表面特征检测的开源算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Snow, ice, and melt ponds cover the surface of the Arctic Ocean infractions that change throughout the seasons. These surfaces control albedoand exert tremendous influence over the energy balance in the Arctic.Increasingly available meter- to decimeter-scale resolution optical imagery capturesthe evolution of the ice and ocean surface state visually, but methods forquantifying coverage of key surface types from raw imagery are not yet wellestablished. Here we present an open-source system designed to provide astandardized, automated, and reproducible technique for processing opticalimagery of sea ice. The method classifies surface coverage into three maincategories: snow and bare ice, melt ponds and submerged ice, and open water.The method is demonstrated on imagery from four sensor platforms and onimagery spanning from spring thaw to fall freeze-up. Tests show theclassification accuracy of this method typically exceeds 96 %. Tofacilitate scientific use, we evaluate the minimum observation area requiredfor reporting a representative sample of surface coverage. We provide anopen-source distribution of this algorithm and associated training datasetsand suggest the community consider this a step towards standardizing opticalsea ice imagery processing. We hope to encourage future collaborativeefforts to improve the code base and to analyze large datasets of opticalsea ice imagery.
机译:雪,冰和融化池塘覆盖了北冰洋的表面整个季节改变的分数。这些表面控制Albedo并对北极的能量平衡产生巨大影响。越来越多的仪表 - 减排尺度分辨率光学图像捕获视觉上冰和海洋表面态的演变,但方法量化原始图像的关键表面类型的覆盖率还不太好已确立的。在这里,我们提出了一个旨在提供的开源系统用于处理光学的标准化,自动化和可重复的技术海冰的图像。该方法将表面覆盖物分为三个主要分类:雪和光秃秃的冰,熔体池塘和潜水冰,开阔水。该方法是在四个传感器平台的图像上进行演示的从春天解冻跨越冻结的图像。测试显示该方法的分类准确性通常超过96%。到促进科学用途,我们评估所需的最低观察区报告表面覆盖的代表性样本。我们提供了一个此算法的开源分发和关联的训练数据集并建议社区考虑这一步迈向标准化光学海冰图像加工。我们希望鼓励未来的协作努力改进代码库并分析光学大量数据集海冰图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号