首页> 外文OA文献 >Groundwater age, life expectancy and transit time distributions in advective–dispersive systems: 1. Generalized reservoir theory
【2h】

Groundwater age, life expectancy and transit time distributions in advective–dispersive systems: 1. Generalized reservoir theory

机译:平流分散系统中的地下室,预期寿命和运输时间分布:1。广义水库理论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a methodology for determining reservoir groundwater age andtransit time probability distributions in a deterministic manner, consideringadvective-dispersive transport in steady velocity fields. In a first step, wepropose to model the statistical distribution of groundwater age at aquiferscale by means of the classical advection-dispersion equation for aconservative and nonreactive tracer, associated to proper boundary conditions.The evaluated function corresponds to the density of probability of the randomvariable age, age being defined as the time elapsed since the water particlesentered the aquifer. An adjoint backward model is introduced to characterizethe life expectancy distribution, life expectancy being the time remainingbefore leaving the aquifer. By convolution of these two distributions,groundwater transit time distributions, from inlet to outlet, are fully definedfor the entire aquifer domain. In a second step, an accurate and efficientmethod is introduced to simulate the transit time distribution at dischargezones. By applying the reservoir theory to advective-dispersive aquifersystems, we demonstrate that the discharge zone transit time distribution canbe evaluated if the internal age probability distribution is known. Thereservoir theory also applies to internal life expectancy probabilitiesyielding the recharge zone life expectancy distribution. Internal groundwatervolumes are finally identified with respect to age and transit time. One- andtwo-dimensional theoretical examples are presented to illustrate the proposedmathematical models, and make inferences on the effect of aquifer structure andmacro-dispersion on the distributions of age, life expectancy and transit time.
机译:考虑到稳定的速度场中,我们以确定性的方式提出一种确定储层地下水时代和结节时间概率分布的方法。在第一步中,通过对适当的边界条件相关的经典的平流和非反应示踪剂的经典的平流分散方程模拟地下水位统计分布的地下水位统计分布。评估功能对应于随机等级的概率密度,年龄被定义为自水分解为含水层以来的时间。伴随着伴随落后模型的特征预期寿命分布,预期寿命是留下含水层的时间。通过这两个分布的卷积,从入口到出口的地下运输时间分布完全符合整个含水层域。在第二步中,引入准确和有效的方法以模拟丢失时的传输时间分布。通过将储库理论应用于平流 - 分散的含水系统,我们证明了如果已知内部年龄概率分布,则可以评估放电区传输时间分布。 Thereservoir理论也适用于内部寿命预期概率依菲般的充电区预期寿命分布。最终确定内部地下水volumes是关于年龄和过境时间的确定。提出了一种和尺寸的理论实例以说明拟议的模型,并对含水层结构和辐射效果的效果推断出对年龄,预期寿命和运输时间的分布。

著录项

  • 作者

    F. Cornaton; P. Perrochet;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号