首页> 外文OA文献 >Multiple Imputation based Clustering Validation (MIV) for Big Longitudinal Trial Data with Missing Values in eHealth
【2h】

Multiple Imputation based Clustering Validation (MIV) for Big Longitudinal Trial Data with Missing Values in eHealth

机译:基于多个归纳的聚类验证(MIV),用于储存中缺失值的大纵向试验数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Web-delivered trials are an important component in eHealth services. These trials, mostly behavior-based, generate big heterogeneous data that are longitudinal, high dimensional with missing values. Unsupervised learning methods have been widely applied in this area, however, validating the optimal number of clusters has been challenging. Built upon our multiple imputation (MI) based fuzzy clustering, MIfuzzy, we proposed a new multiple imputation based validation (MIV) framework and corresponding MIV algorithms for clustering big longitudinal eHealth data with missing values, more generally for fuzzy-logic based clustering methods. Specifically, we detect the optimal number of clusters by auto-searching and -synthesizing a suite of MI-based validation methods and indices, including conventional (bootstrap or cross-validation based) and emerging (modularity-based) validation indices for general clustering methods as well as the specific one (Xie and Beni) for fuzzy clustering. The MIV performance was demonstrated on a big longitudinal dataset from a real web-delivered trial and using simulation. The results indicate MI-based Xie and Beni index for fuzzy-clustering are more appropriate for detecting the optimal number of clusters for such complex data. The MIV concept and algorithms could be easily adapted to different types of clustering that could process big incomplete longitudinal trial data in eHealth services.
机译:Web交付的试验是电子保健服务中的重要组成部分。这些试验主要是基于行为的,产生具有缺失值的纵向高维的大异构数据。未经监督的学习方法已广泛应用于该领域,然而,验证群集的最佳数量已经具有挑战性。基于多个估算(MI)的模糊聚类,我们提出了一种新的多个基于多个验证的验证(MIV)框架和相应的MIV算法,用于群体群体群体群体群体,更普遍地用于基于模糊逻辑的聚类方法。具体地,我们通过自动搜索和 - 基于MI的验证方法和指数套件来检测最佳群集数,包括常规(基于引导或基于跨验证)和常规聚类方法的验证指标以及模糊聚类的特定一(XIE和Beni)。 MIV性能在真正的Web交付试验和使用模拟中对大型纵向数据集进行了演示。结果表明模糊聚类的基于MI的XIE和BenI指数更适合于检测这种复杂数据的最佳簇数。 MIV概念和算法可以很容易地适应不同类型的聚类,可以在电子健康服务中处理大不完整的纵向试验数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号