首页> 外文OA文献 >A Twice Optimizing Net With Matrix Decomposition for Hyperspectral and Multispectral Image Fusion
【2h】

A Twice Optimizing Net With Matrix Decomposition for Hyperspectral and Multispectral Image Fusion

机译:Hyperspectral和多光谱图像融合的矩阵分解的两次优化网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fusing a low-resolution hyperspectral (LRHS) image and a high-resolution multispectral (HRMS) image to generate a high-resolution hyperspectral (HRHS) image has grown a significant and attractive application in remote sensing fields. Recently, the popularization of deep learning has injected more possibilities into the fusion work. However, there still exists a difficulty that is how to make the best of the acquired LRHS and HRMS images. In this article, we present a twice optimizing net with matrix decomposition to fulfill the fusion task, which can be roughly divided into three stages: pre-optimization, deep prior learning, post-optimization. Specifically, we first transform this fusion problem into a spectral optimization problem and a spatial optimization problem with the help of matrix decomposition. These two optimization problems can be handled sequentially by solving a linear equation, respectively, and then we can obtain the initial HRHS image by multiplying the two solutions. Next, we establish the mapping between the initial image and the reference image through an end-to-end deep residual network based on local and nonlocal connectivity. In order to get better performance, we have customized a loss function specifically for the fusion task as well. Finally, we return the predicted result again to the optimization procedure to get the final fusion image. After the evaluation on three simulated datasets and one real dataset, it illustrates that the proposed method outperforms many state-of-the-art ones.
机译:融合低分辨率高光谱(LRHS)图像和高分辨率的多光谱(HRMS)图像以产生高分辨率高光谱(HRHS)图像在遥感领域的显着且有吸引力的应用。最近,深度学习的普及已经注入了更多的可能性进入融合工作。但是,仍然存在困难,即如何充分利用所获取的LRHS和HRMS图像。在本文中,我们提出了两次优化网络,矩阵分解以实现融合任务,可以大致分为三个阶段:预优化,深度学习,优化后。具体而言,我们首先将该融合问题转换为借助矩阵分解的光谱优化问题和空间优化问题。通过分别求解线性方程,可以顺序处理这两个优化问题,然后我们可以通过乘以两个解决方案来获得初始HRHS图像。接下来,我们通过基于局部和非识别连接的端到端的深度剩余网络在初始图像和参考图像之间建立映射。为了获得更好的性能,我们也为融合任务定制了一个专门的损失函数。最后,我们再次将预测结果返回到优化过程以获得最终的融合图像。在三个模拟数据集和一个真实数据集的评估之后,它说明了所提出的方法优于许多最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号