首页> 外文OA文献 >Coarse-to-fine Planar Regularization for Dense Monocular Depth Estimation
【2h】

Coarse-to-fine Planar Regularization for Dense Monocular Depth Estimation

机译:致密单眼深度估计的粗致细平面正则化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Simultaneous localization and mapping (SLAM) using the whole image data is an appealing framework to address shortcoming of sparse feature-based methods - in particular frequent failures in textureless environments. Hence, direct methods bypassing the need of feature extraction and matching became recently popular. Many of these methods operate by alternating between pose estimation and computing (semi-)dense depth maps, and are therefore not fully exploiting the advantages of joint optimization with respect to depth and pose. In this work, we propose a framework for monocular SLAM, and its local model in particular, which optimizes simultaneously over depth and pose. In addition to a planarity enforcing smoothness regularizer for the depth we also constrain the complexity of depth map updates, which provides a natural way to avoid poor local minima and reduces unknowns in the optimization. Starting from a holistic objective we develop a method suitable for online and real-time monocular SLAM. We evaluate our method quantitatively in pose and depth on the TUM dataset, and qualitatively on our own video sequences.
机译:使用整个图像数据的同时定位和映射(SLAM)是一种吸引人的框架,可以解决基于稀疏功能的方法的缺点 - 特别是Textulless环境中的频繁失败。因此,直接方法绕过特征提取和匹配的需要最近流行。许多这些方法通过姿态估计和计算(半)密集深度图之间交替进行操作,并且因此不充分利用的联合优化的优点相对于深度和姿态。在这项工作中,我们提出了一种用于单眼SLAM的框架,特别是其本地模型,其同时优化了深度和姿势。除了适用于深度的平坦性规范器之外,我们还限制了深度地图更新的复杂性,这提供了一种自然的方式来避免众多局部最小值,并在优化中减少未知。从整体目标开始,我们开发一种适用于在线和实时单手套的方法。我们在TUM数据集上定量地评估我们的方法和深度,并定性对我们自己的视频序列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号