首页> 外文OA文献 >Individual-Specific Classification of Mental Workload Levels Via an Ensemble Heterogeneous Extreme Learning Machine for EEG Modeling
【2h】

Individual-Specific Classification of Mental Workload Levels Via an Ensemble Heterogeneous Extreme Learning Machine for EEG Modeling

机译:通过EEG建模的集合异构极端学习机的个人特定分类心理工作量水平

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a human−machine cooperation system, assessing the mental workload (MW) of the human operator is quite crucial to maintaining safe operation conditions. Among various MW indicators, electroencephalography (EEG) signals are particularly attractive because of their high temporal resolution and sensitivity to the occupation of working memory. However, the individual difference of the EEG feature distribution may impair the machine-learning based MW classifier. In this paper, we employed a fast-training neural network, extreme learning machine (ELM), as the basis to build an individual-specific classifier ensemble to recognize binary MW. To improve the diversity of the classification committee, heterogeneous member classifiers were adopted by fusing multiple ELMs and Bayesian models. Specifically, a deep network structure was applied in each weak model aiming at finding informative EEG feature representations. The structure of hyper-parameters of the proposed heterogeneous ensemble ELM (HE-ELM) was then identified and then its performance was compared against several competitive MW classifiers. We found that the HE-ELM model was superior for improving the individual-specific accuracy of MW assessments.
机译:在人机合作系统中,评估人类操作员的心理工作量(MW)对于维持安全操作条件非常重要。在各种MW指标中,脑电图(EEG)信号是特别有吸引力的,因为它们具有高的时间分辨率和对工作记忆占用的敏感性。然而,EEG特征分布的个体差异可能会损害基于机器学习的MW分类器。在本文中,我们雇用了一个快速训练的神经网络,极端学习机(ELM),作为构建个人特定分类器合奏的基础,以识别二进制MW。为了改善分类委员会的多样性,通过融合多个榆树和贝叶斯模型来采用异质成员分类。具体地,在每个弱模型中应用了深度网络结构,其旨在找到信息性EEG特征表示。然后鉴定了所提出的非均相集合ELM(HE-ELM)的超参数的结构,然后将其性能与几种竞争MW分类器进行比较。我们发现He-Elm模型优于提高MW评估的个体特异性准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号