首页> 外文OA文献 >Homeostatic Plasticity and External Input Shape Neural Network Dynamics
【2h】

Homeostatic Plasticity and External Input Shape Neural Network Dynamics

机译:稳态可塑性和外部输入形状神经网络动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

In vitro and in vivo spiking activity clearly differ. Whereas networks in vitro develop strong bursts separated by periods of very little spiking activity, in vivo cortical networks show continuous activity. This is puzzling considering that both networks presumably share similar single-neuron dynamics and plasticity rules. We propose that the defining difference between in vitro and in vivo dynamics is the strength of external input. In vitro, networks are virtually isolated, whereas in vivo every brain area receives continuous input. We analyze a model of spiking neurons in which the input strength, mediated by spike rate homeostasis, determines the characteristics of the dynamical state. In more detail, our analytical and numerical results on various network topologies show consistently that under increasing input, homeostatic plasticity generates distinct dynamic states, from bursting, to close-to-critical, reverberating, and irregular states. This implies that the dynamic state of a neural network is not fixed but can readily adapt to the input strengths. Indeed, our results match experimental spike recordings in vitro and in vivo: The in vitro bursting behavior is consistent with a state generated by very low network input (<0.1%), whereas in vivo activity suggests that on the order of 1% recorded spikes are input driven, resulting in reverberating dynamics. Importantly, this predicts that one can abolish the ubiquitous bursts of in vitro preparations, and instead impose dynamics comparable to in vivo activity by exposing the system to weak long-term stimulation, thereby opening new paths to establish an in vivo-like assay in vitro for basic as well as neurological studies.
机译:在体外和体内活性的尖峰明显不同。而在体外网络开发由非常少的尖峰活动的时期分开强突发,体内皮层网络显示连续的活性。这是令人费解考虑到这两个网络共享大概类似的单神经元动力学和可塑性的规则。我们建议,在体外和体内动力学之间的差定义为外部输入的强度。在体外,网络实际上在体内每脑区域接收连续输入隔离,而。我们分析尖峰的神经元模型,其中所述输入强度,通过穗率稳态介导的,确定的动力学状态的特性。更详细地,在各种网络拓扑我们的分析和数值结果一致表明,增加输入下,稳态塑性产生不同的动态状态,从破裂,收到关键的,回荡和不规则的状态。这意味着,一个神经网络的动态状态不是固定的而是可以容易地适应输入强度。事实上,我们的结果匹配的体外和体内实验的尖峰录音:体外破裂行为是由非常低的网络输入(<0.1%)产生的状态一致,而在体内活性表明,在1%的记录尖峰的顺序被输入驱动,产生回荡动力学。重要的是,这种预测,可以废除的无处不在的突发体外制剂,而是由系统暴露于弱长期刺激,由此打开新路径,以建立一个在生物体内类似的测定法在体外强加动力学相当的体内活性基本以及神经系统的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号