...
首页> 外文期刊>Physical Review X >Homeostatic Plasticity and External Input Shape Neural Network Dynamics
【24h】

Homeostatic Plasticity and External Input Shape Neural Network Dynamics

机译:稳态可塑性和外部输入形状神经网络动力学

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In?vitro and in?vivo spiking activity clearly differ. Whereas networks in?vitro develop strong bursts separated by periods of very little spiking activity, in?vivo cortical networks show continuous activity. This is puzzling considering that both networks presumably share similar single-neuron dynamics and plasticity rules. We propose that the defining difference between in?vitro and in?vivo dynamics is the strength of external input. In vitro , networks are virtually isolated, whereas in?vivo every brain area receives continuous input. We analyze a model of spiking neurons in which the input strength, mediated by spike rate homeostasis, determines the characteristics of the dynamical state. In more detail, our analytical and numerical results on various network topologies show consistently that under increasing input, homeostatic plasticity generates distinct dynamic states, from bursting, to close-to-critical, reverberating, and irregular states. This implies that the dynamic state of a neural network is not fixed but can readily adapt to the input strengths. Indeed, our results match experimental spike recordings in?vitro and in?vivo : The in?vitro bursting behavior is consistent with a state generated by very low network input ( 0.1 % ), whereas in?vivo activity suggests that on the order of 1% recorded spikes are input driven, resulting in reverberating dynamics. Importantly, this predicts that one can abolish the ubiquitous bursts of in?vitro preparations, and instead impose dynamics comparable to in?vivo activity by exposing the system to weak long-term stimulation, thereby opening new paths to establish an in?vivo -like assay in?vitro for basic as well as neurological studies.
机译:在体外和体内尖刺活动明显不同。虽然网络中的网络(vivo皮质网络)发育出来的强烈突发,在X型尖刺活动中分开,但是在βvivo皮质网络中显示出连续的活动。考虑到这两个网络可能占据了类似的单神经元动力学和可塑性规则,这是令人费解的。我们建议在体外和体内动力学之间的定义差异是外部输入的强度。在体外,网络实际上隔离,而在α中,每个脑区域接收连续输入。我们分析了一种尖刺神经元模型,其中输入强度,由尖峰率稳态介导的,决定了动态状态的特征。更详细地,我们对各种网络拓扑上的分析和数值结果始终如一地显示,在增加的输入下,稳态可塑性产生不同的动态状态,从爆裂到近距离,混响和不规则状态。这意味着神经网络的动态状态不固定,而是可以容易地适应输入强度。实际上,我们的结果匹配了体外和体内的实验尖峰录制:IN的体外爆裂行为与由非常低的网络输入(<0.1%)产生的状态一致,而在αvivo活动中表明按顺序提出输入驱动1%录制的尖峰,导致动态混响。重要的是,这预测人们可以通过将系统暴露于弱长期刺激,而是通过将系统暴露于弱长期刺激来消除普遍存存的突起,而是可以消除在体外制剂中的普遍存在的爆发,而是通过将系统暴露于弱的长期刺激。用于基础和神经学研究的体外测定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号