首页> 外文OA文献 >Multigrades Classification Model of Magnesite Ore Based on SAE and ELM
【2h】

Multigrades Classification Model of Magnesite Ore Based on SAE and ELM

机译:基于SAE和ELM的菱镁矿矿石分类模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magnesite is an important raw material for extracting magnesium metal and magnesium compound; how precise its grade classification exerts great influence on the smelting process. Thus, it is increasingly important to determine fast and accurately the grade of magnesite. In this paper, a method based on stacked autoencoder (SAE) and extreme learning machine (ELM) was established for the classification model of magnesite. Stacked autoencoder (SAE) was firstly used to reduce the dimension of magnesite spectrum data and then neutral network model of extreme learning machine (ELM) was adopted to classify the data. Two improved extreme learning machine (ELM) models were employed for better classification, namely, accuracy extreme learning machine (AELM) and integrated accuracy (IELM) to build up the classification models. The grade classification through traditional methods such as chemical approaches, artificial methods, and BP neutral network model was compared to that in this paper. Results showed that the classification model of magnesite ore through stacked autoencoder (SAE) and extreme learning machine (ELM) is better in terms of speed and accuracy; thus, this paper provides a new way for the grade classification of magnesite ore.
机译:菱镁矿是用于萃取镁金属和镁化合物的重要原料;其等级分类的精确对冶炼过程产生了很大影响。因此,越来越重要的是确定快速准确地菱镁矿等级。本文建立了一种基于堆叠的AutoEncoder(SAE)和极端学习机(ELM)的方法,用于菱镁矿的分类模型。首先使用堆叠的AutoEncoder(SAE)来减少菱镁矿频谱数据的尺寸,然后采用了极端学习机(ELM)的中性网络模型来分类数据。使用两个改进的极端学习机(ELM)模型用于更好的分类,即精确的极限学习机(AELM)和集成精度(IELM)来构建分类模型。通过传统方法,例如化学方法,人工方法和BP中性网络模型的等级分类与本文进行了比较。结果表明,菱镁矿通过堆叠自动化器(SAE)和极端学习机(ELM)的分类模型在速度和准确性方面更好;因此,本文为菱镁矿矿石分类提供了一种新的方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号