首页> 外文OA文献 >Unsupervised Bayesian Nonparametric Approach with Incremental Similarity Tracking of Unlabeled Water Demand Time Series for Anomaly Detection
【2h】

Unsupervised Bayesian Nonparametric Approach with Incremental Similarity Tracking of Unlabeled Water Demand Time Series for Anomaly Detection

机译:无监督的贝叶斯非参数方法,具有对异常检测的未标记水需求时间序列的增量相似性跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a fusion of unsupervised clustering and incremental similarity tracking of hourly water demand series is proposed. Current research using unsupervised methodologies to detect anomalous water is limited and may possess several limitations such as a large amount of dataset, the need to select an optimal cluster number, or low detection accuracy. Our proposed approach aims to address the need for a large amount of dataset by detecting anomaly through (1) clustering points that are relatively similar at each time step, (2) clustering points at each time step by the similarity in how they vary from each time step, and (3) to compare the incoming points with a reference shape for online anomalous trend detection. Secondly, through the use of Bayesian nonparametric approach such as the Dirichlet Process Mixture Model, the need to choose an optimal cluster number is eliminated and provides a subtle solution for ‘reserving’ an empty cluster for the future anomaly. Among the 165 randomly generated anomalies, the proposed approach detected a total of 159 anomalies and other anomalous trends present in the data. As the data is unlabeled, identified anomalous trends cannot be verified. However, results show great potential in using minimally unlabeled water demand data for a preliminary anomaly detection.
机译:本文提出了一种融合,对每小时水需求系列的无监督聚类和增量相似性跟踪。使用无监督方法来检测异常水的目前的研究是有限的,并且可能具有若干限制,例如大量数据集,需要选择最佳簇数或低检测精度。我们所提出的方法旨在通过检测在每个时间步骤中相对相似的(1)群集点来解决大量数据集的需要,每个时间步骤相对相似,每次步骤在它们之间的相似性时,它们的相似性时间步长,(3)将输入点与参考形状进行比较以进行在线异常趋势检测。其次,通过使用贝叶斯非参数方法,如Dirichlet过程混合模型,消除了选择最佳簇号的需要,并为未来异常的“保留”空集群提供微妙的解决方案。在165个随机产生的异常中,该方法检测到数据中共有159个异常和数据中的其他异常趋势。由于数据未标记,因此无法验证已识别的异常趋势。然而,结果在使用最小的未标记的水需求数据进行初步异常检测的可能性很大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号