首页> 外文OA文献 >Player Performance Prediction in Massively Multiplayer Online Role-Playing Games (MMORPGs)
【2h】

Player Performance Prediction in Massively Multiplayer Online Role-Playing Games (MMORPGs)

机译:播放器在大型多人在线角色扮演游戏中的性能预测(MMORPGS)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent years have seen an ever increasing number of people interacting in the online space. Massively multiplayer online role-playing games (MMORPGs) are personal computer or console-based digital games where thousands of players can simultaneously sign on to the same online, persistent virtual world to interact and collaborate with each other through their in-game characters. In recent years, researchers have found virtual environments to be a sound venue for studying learning, collaboration, social participation, literacy in online space, and learning trajectory at the individual level as well as at the group level. While many games today provide web and GUI-based reports and dashboards for monitoring player performance, we propose a more comprehensive performance management tool (i.e. player scorecards) for measuring and reporting operational activities of game players. This study uses performance data of game players in EverQuest II, a popular MMORPG developed by Sony Online Entertainment, to build performance prediction models for game players. The prediction models provide a projection of playeru27s future performance based on his past performance, which is expected to be a useful addition to existing player performance monitoring tools. First, we show that variations of PECOTA and MARCEL, two most popular baseball home run prediction methods, can be used for game player performance prediction. Second, we evaluate the effects of varying lengths of past performance and show that past performance can be a good predictor of future performance up to a certain degree. Third, we show that game players do not regress towards the mean and that prediction models built on buckets using discretization based on binning and histograms lead to higher prediction coverage.
机译:近年来,越来越多的人在网上空间中互动。大量多人在线角色播放游戏(MMORPGS)是基于个人计算机或基于控制台的数字游戏,其中成千上万的玩家可以通过他们的游戏中的字符来同时登录同一个在线,持久的虚拟世界,通过他们的游戏中的字符互相互动和协作。近年来,研究人员发现虚拟环境是学习学习,协作,社交参与,在线空间识字的声音场所,以及在个人层面的学习轨迹以及集团级别。虽然今天许多游戏提供了基于Web和GUI的报告和仪表板,用于监控播放器性能,但我们提出了一个更全面的绩效管理工具(即球员记分卡),用于测量和报告游戏玩家的业务活动。本研究使用Everquest II中的游戏玩家的性能数据,由索尼在线娱乐开发的流行MMORPG,为游戏玩家构建性能预测模型。预测模型基于他的过去的性能,提供了Player U27S未来性能的投影,这预计将成为现有玩家性能监控工具的有用补充。首先,我们展示了Pecota和Marcel的变化,两个最受欢迎的棒球家庭运行预测方法,可用于游戏玩家性能预测。其次,我们评估了不同长度的过去性能的影响,并表明过去的性能可能是未来性能的良好预测因素,这是一定程度。第三,我们表明游戏玩家不会朝着使用基于分子和直方图的离散化而建立在桶的平均值和预测模型的预测模型导致更高的预测覆盖范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号