首页> 外文OA文献 >Motion Capture Research: 3D Human Pose Recovery Based on RGB Video Sequences
【2h】

Motion Capture Research: 3D Human Pose Recovery Based on RGB Video Sequences

机译:运动捕获研究:基于RGB视频序列的3D人类姿势恢复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Using video sequences to restore 3D human poses is of great significance in the field of motion capture. This paper proposes a novel approach to estimate 3D human action via end-to-end learning of deep convolutional neural network to calculate the parameters of the parameterized skinned multi-person linear model. The method is divided into two main stages: (1) 3D human pose estimation based on a single frame image. We use 2D/3D skeleton point constraints, human height constraints, and generative adversarial network constraints to obtain a more accurate human-body model. The model is pre-trained using open-source human pose datasets; (2) Human-body pose generation based on video streams. Combined with the correlation of video sequences, a 3D human pose recovery method based on video streams is proposed, which uses the correlation between videos to generate a smoother 3D pose. In addition, we compared the proposed 3D human pose recovery method with the commercial motion capture platform to prove the effectiveness of the proposed method. To make a contrast, we first built a motion capture platform through two Kinect (V2) devices and iPi Soft series software to obtain depth-camera video sequences and monocular-camera video sequences respectively. Then we defined several different tasks, including the speed of the movements, the position of the subject, the orientation of the subject, and the complexity of the movements. Experimental results show that our low-cost method based on RGB video data can achieve similar results to commercial motion capture platform with RGB-D video data.
机译:使用视频序列来恢复3D人类姿势在运动捕获领域具有重要意义。本文提出了一种通过深度卷积神经网络的端到端学习来估计3D人类行动的新方法,以计算参数化皮肤多人线性模型的参数。该方法分为两个主要阶段:(1)基于单帧图像的3D人类姿势估计。我们使用2D / 3D骨架点约束,人高度约束和生成的对抗网络约束来获得更准确的人体模型。该模型采用开源人类姿势数据集预先培训; (2)基于视频流的人体姿势生成。结合视频序列的相关性,提出了一种基于视频流的3D人类姿势恢复方法,其使用视频之间的相关性来生成更漂亮的3D姿势。此外,我们将建议的3D人类姿势恢复方法与商业运动捕获平台进行比较,以证明该方法的有效性。为了形成对比,我们首先通过两个Kinect(V2)设备和IPI软系软件建立了运动捕捉平台,分别获得深度相机视频序列和单眼摄像机视频序列。然后我们定义了几个不同的任务,包括运动的速度,主题的位置,主题的方向,以及运动的复杂性。实验结果表明,我们基于RGB视频数据的低成本方法可以实现与RGB-D视频数据的商业运动捕获平台相似的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号