首页> 外文OA文献 >Spatially Explicit Burden Estimates of Malaria in Tanzania: Bayesian Geostatistical Modeling of the Malaria Indicator survey data.
【2h】

Spatially Explicit Burden Estimates of Malaria in Tanzania: Bayesian Geostatistical Modeling of the Malaria Indicator survey data.

机译:坦桑尼亚的疟疾在空间上的间接负担估计:疟疾指标调查数据的贝叶斯地统计模型。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A national HIV/AIDS and malaria parasitological survey was carried out in Tanzania in 2007-2008. In this study the parasitological data were analyzed: i) to identify climatic/environmental, socio-economic and interventions factors associated with child malaria risk and ii) to produce a contemporary, high spatial resolution parasitaemia risk map of the country. Bayesian geostatistical models were fitted to assess the association between parasitaemia risk and its determinants. bayesian kriging was employed to predict malaria risk at unsampled locations across Tanzania and to obtain the uncertainty associated with the predictions. Markov chain Monte Carlo (MCMC) simulation methods were employed for model fit and prediction. Parasitaemia risk estimates were linked to population data and the number of infected children at province level was calculated. Model validation indicated a high predictive ability of the geostatistical model, with 60.00% of the test locations within the 95% credible interval. The results indicate that older children are significantly more likely to test positive for malaria compared with younger children and living in urban areas and better-off households reduces the risk of infection. However, none of the environmental and climatic proxies or the intervention measures were significantly associated with the risk of parasitaemia. Low levels of malaria prevalence were estimated for Zanzibar island. The population-adjusted prevalence ranges from 0.29% in Kaskazini province (Zanzibar island) to 18.65% in Mtwara region. The pattern of predicted malaria risk is similar with the previous maps based on historical data, although the estimates are lower. The predicted maps could be used by decision-makers to allocate resources and target interventions in the regions with highest burden of malaria in order to reduce the disease transmission in the country.
机译:2007-2008年在坦桑尼亚进行了一次全国艾滋病毒/艾滋病和疟疾寄生虫病调查。在这项研究中,分析了寄生虫学数据:i)查明与儿童疟疾风险有关的气候/环境,社会经济和干预因素,以及ii)制作了该国当代,高空间分辨率的寄生虫病风险图。使用贝叶斯地统计学模型来评估寄生虫血症风险及其决定因素之间的关联。贝叶斯克里金法用于预测坦桑尼亚未抽样地点的疟疾风险,并获得与预测相关的不确定性。马尔可夫链蒙特卡罗(MCMC)仿真方法用于模型拟合和预测。寄生虫血症的风险估计与人口数据相关联,并计算了省级感染儿童的数量。模型验证表明,地统计学模型具有较高的预测能力,其中60.00%的测试位置在95%可信区间内。结果表明,与年龄较小的儿童和生活在城市地区的儿童相比,年龄较大的儿童检测疟疾的可能性明显更高,居住条件较好的家庭减少了感染的风险。但是,没有任何环境和气候代理或干预措施与寄生虫血症的风险显着相关。据估计,桑给巴尔岛的疟疾流行水平较低。人口调整后的患病率从卡斯卡兹尼省(桑给巴尔岛)的0.29%到姆特瓦拉地区的18.65%。尽管估计值较低,但预测的疟疾风险模式与基于历史数据的先前地图相似。决策者可使用预测的地图在疟疾负担最重的地区分配资源并针对干预措施,以减少该国的疾病传播。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号