首页> 外文OA文献 >A Deep-Learning-Based Vehicle Detection Approach for Insufficient and Nighttime Illumination Conditions
【2h】

A Deep-Learning-Based Vehicle Detection Approach for Insufficient and Nighttime Illumination Conditions

机译:基于深度学习的车辆检测方法,不足和夜间照明条件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most object detection models cannot achieve satisfactory performance under nighttime and other insufficient illumination conditions, which may be due to the collection of data sets and typical labeling conventions. Public data sets collected for object detection are usually photographed with sufficient ambient lighting. However, their labeling conventions typically focus on clear objects and ignore blurry and occluded objects. Consequently, the detection performance levels of traditional vehicle detection techniques are limited in nighttime environments without sufficient illumination. When objects occupy a small number of pixels and the existence of crucial features is infrequent, traditional convolutional neural networks (CNNs) may suffer from serious information loss due to the fixed number of convolutional operations. This study presents solutions for data collection and the labeling convention of nighttime data to handle various types of situations, including in-vehicle detection. Moreover, the study proposes a specifically optimized system based on the Faster region-based CNN model. The system has a processing speed of 16 frames per second for 500 × 375-pixel images, and it achieved a mean average precision (mAP) of 0.8497 in our validation segment involving urban nighttime and extremely inadequate lighting conditions. The experimental results demonstrated that our proposed methods can achieve high detection performance in various nighttime environments, such as urban nighttime conditions with insufficient illumination, and extremely dark conditions with nearly no lighting. The proposed system outperforms original methods that have an mAP value of approximately 0.2.
机译:大多数物体检测模型不能在夜间和其他不足的照明条件下实现令人满意的性能,这可能是由于数据集的集合和典型的标记约定。收集用于对象检测的公共数据集通常用足够的环境照明拍摄。但是,它们的标签约定通常关注清除对象并忽略模糊和闭塞对象。因此,传统车辆检测技术的检测性能水平在夜间环境中受到限制而没有充分的照明。当物体占据少量像素并且关键特征的存在不常见时,传统的卷积神经网络(CNNS)可能由于固定数量的卷积操作而遭受严重的信息损失。本研究提出了数据收集的解决方案和夜间数据的标签惯例,以处理各种类型的情况,包括车载检测。此外,该研究提出了一种基于更快的基于区域的CNN模型的优化系统。系统的处理速度为每秒16帧,500×375像素图像,它在涉及城市夜间的验证段中达到0.8497的平均平均精度(MAP),涉及城市夜间的验证段和极其不足的照明条件。实验结果表明,我们所提出的方法可以在各种夜间环境中实现高的检测性能,例如不足的城市夜间条件,并且极度无照明的暗淡条件。所提出的系统优于具有约0.2的地图值的原始方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号